Skip to main content
Log in

A comparative study of recent improvements in wavelet-based image coding schemes

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Among the existing lossy compression methods, the transform coding is one of the most effective strategies. The Discrete Wavelet Transform (DWT) can be efficiently used in image coding applications because of its advantages as compared to the other transforms. A typical wavelet image compression system is composed of three connected components namely transformation, quantization and coding. In this paper, we review the recent improvements of each component. We present a detailed study of the recent implementation of the DWT as well as of its improvements. In addition, we describe the main principles of the wavelet-based compression schemes such as EZW, SPIHT, SPECK and EBCOT. We review the advantages and shortcomings of each of these algorithms. Also, we provide a survey of the recent improvements of the different coding schemes. Moreover, a comparative analysis of the recent enhancement and compression techniques is carried out in terms of visual quality and encoding time. We conclude by some guidelines which concern the design of an efficient codec for wavelet image compression using spline transform and improved coding scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Abdullah M, Subba Rao N (2013) Image compression using classical and lifting based wavelets. Int J Adv Res Comput Commun Eng 2:8

    Google Scholar 

  2. Ahmed NMA, Brifcani AMA (2013) A new modified embedded zerotree wavelet approach for image coding (nmezw). International Journal of Scientific and Engineering Research, vol 4

  3. Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using wavelet transform. IEEE Trans Image Process 1(2):205–220

    Article  Google Scholar 

  4. Athmane Z (2013) Ondelettes et techniques de compression d’images numérique. Ph.D. dissertation, Université de Biskra

  5. Averbuch AZ, Pevnyi AB, Zheludev VA (2001) Biorthogonal butterworth wavelets derived from discrete interpolatory splines. IEEE Trans Signal Process 49 (11):2682–2692

    Article  MathSciNet  MATH  Google Scholar 

  6. Averbuch AZ, Zheludev VA (2004) A new family of spline-based biorthogonal wavelet transforms and their application to image compression. IEEE Trans Image Process 13(7):993–1007

    Article  MathSciNet  Google Scholar 

  7. Averbuch AZ, Neittaanmäki P, Zheludev VA (2015) Spline and spline wavelet methods with applications to signal and image processing: Volume II: Non-Periodic Splines. Springer, Switzerland

    MATH  Google Scholar 

  8. Averbuch AZ, Pevnyi AB, Zheludev VA (2001) Butterworth wavelet transforms derived from discrete interpolatory splines: Recursive implementation. Signal Process 81(11):2363–2382

    Article  MATH  Google Scholar 

  9. Averbuch AZ, Zheludev VA (2002) Construction of biorthogonal discrete wavelet transforms using interpolatory splines. Appl Comput Harmon Anal 12(1):25–56

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhokare G, Kumar U, Patil B, Gadre V (2012) Efficient coding of sparse trees using an enhanced-embedded zerotree wavelet algorithm. Signal Image Video Process 6(1):99–108

    Article  Google Scholar 

  11. Boujelbene R, Jemaa YB, Zribi M (2016) Toward an optimal b-spline wavelet transform for image compression

  12. Boujelbene R, Jemaa YB, Zribi M (2017) An efficient codec for image compression based on spline wavelet transform and improved SPIHT algorithm. In: 2017 international conference on high performance computing & simulation, HPCS 2017, Genoa, July 17-21, 2017, pp 819–825

  13. Brahimi T, Laouir F, Boubchir L, Ali-Chérif A (2017) An improved wavelet-based image coder for embedded greyscale and colour image compression. AEU Int J Electron Commun 73:183–192

    Article  Google Scholar 

  14. Che S, Che Z, Wang H, Huang Q (2009) Image compression algorithm based on decreasing bits coding. In: Fifth international conference on information assurance and security, 2009. IAS’09, vol 1. IEEE, pp 217–220

  15. Chen B, Yang Z, Huang S, Du X, Cui Z, Bhimani J, Xie X, Mi N Cyber-physical system enabled nearby traffic flow modelling for autonomous vehicles. In: Performance computing and communications conference (IPCCC), 2017 IEEE 36th international, IEEE, pp 1–6, vol 2017

  16. Chithra P, Srividhya K (2013) A comparative study of wavelet coders for image compression. In: Mining intelligence and knowledge exploration. Springer, pp 260–269

  17. Chui CK, Wang J-z (1992) On compactly supported spline wavelets and a duality principle. Trans Am Math Soc 330(2):903–915

    Article  MathSciNet  MATH  Google Scholar 

  18. Cohen A, Daubechies I, Feauveau J-C (1992) Biorthogonal bases of compactly supported wavelets. Commun Pure Appl Math 45(5):485–560

    Article  MathSciNet  MATH  Google Scholar 

  19. Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics. https://doi.org/https://books.google.tn/books?id=B3C5aG4OboIC, https://doi.org/10.1137/1.9781611970104, https://epubs.siam.org/doi/abs/10.1137/1.9781611970104

  20. Daubechies I, Sweldens W (1998) Factoring wavelet transforms into lifting steps. J Fourier Anal Appl 4(3):247–269

    Article  MathSciNet  MATH  Google Scholar 

  21. Davis GM, Nosratinia A (1999) Wavelet-based image coding: an overview. In: Applied and computational control, signals, and circuits. Springer, pp 369–434

  22. Ding M (2015) Multilayer joint gait-pose manifolds for human gait motion modeling. IEEE Transactions on Cybernetics 45(11):2413–2424

    Article  Google Scholar 

  23. Ding M, Fan G (2016) Articulated and generalized gaussian kernel correlation for human pose estimation. IEEE Trans Image Process 25(2):776–789

    Article  MathSciNet  Google Scholar 

  24. Dubey V, Mittal N, Kerhalkar SG (2013) A review on wavelet-based image compression techniques. Int J Sci Eng Technol 2(8):783–788

    Google Scholar 

  25. Garg A, Singh P (2017) A review on image compression techniques

  26. Grgic S, Grgic M, Zovko-Cihlar B (2001) Performance analysis of image compression using wavelets. IEEE Trans Ind Electron 48(3):682–695

    Article  Google Scholar 

  27. Hamza R, Muhammad K, Lv Z, Titouna F (2017) Secure video summarization framework for personalized wireless capsule endoscopy. Pervasive Mob Comput 41:436–450

    Article  Google Scholar 

  28. Hamza R, Muhammad K, Nachiappan A, González GR (2017) Hash based encryption for keyframes of diagnostic hysteroscopy. IEEE Access

  29. Hasan KK, Ngah UK, Salleh MFM (2014) Efficient hardware-based image compression schemes for wireless sensor networks: a survey. Wirel Pers Commun 77 (2):1415–1436

    Article  Google Scholar 

  30. Hazarathaiah A, Rao BP (2014) Medical image compression using lifting based new wavelet transforms. Int J Electr Comput Eng 4(5):741

    Google Scholar 

  31. Hsiang S-T (2001) Embedded image coding using zeroblocks of subband/wavelet coefficients and context modeling. In: Data compression conference, 2001. Proceedings. DCC, 2001, IEEE, pp 83–92

  32. Huang K-K, Dai D-Q (2012) A new on-board image codec based on binary tree with adaptive scanning order in scan-based mode. IEEE Trans Geosci Remote Sens 50 (10):3737–3750

    Article  Google Scholar 

  33. Huffman DA et al. (1952) A method for the construction of minimum-redundancy codes. Proc IRE 40(9):1098–1101

    Article  MATH  Google Scholar 

  34. Hussain A, Al-Fayadh A, Radi N (2018) Image compression techniques: A survey in lossless and lossy algorithms. Neurocomputing

  35. Incerti E (2003) Compression d’image: algorithmes et standards. Vuibert Informatique

  36. Islam A, Pearlman WA (1998) Embedded and efficient low-complexity hierarchical image coder. In: Electronic Imaging’99. International Society for Optics and Photonics, pp 294–305

  37. Karthikeyan T, Praburaj B, Kesavapandian K (2014) Wavelet based image compression algorithms-a study. Int J Adv Comput Res 4(1):80

    Google Scholar 

  38. Ke-kun H (2012) Improved set partitioning in hierarchical trees algorithm based on adaptive coding order. J Comput Appl 32(3):732–735

    Google Scholar 

  39. Ke-kun H (2012) Improved spiht algorithm based on binary tree. Comput Eng 15:063

    Google Scholar 

  40. Kotteri KA, Barua S, Bell AE, Carletta J (2005) A comparison of hardware implementations of the biorthogonal 9/7 dwt: convolution versus lifting. IEEE Trans Circ Syst Express Briefs 52(5):256–260

    Article  Google Scholar 

  41. Langdon G, Gulati A, Seiler E (1992) On the jpeg model for lossless image compression. In: Data compression conference, 1992. DCC’92, IEEE, pp 172–180

  42. Liu H, Huang K-K (2016) Zerotree wavelet image compression with weighted sub-block-trees and adaptive coding order. Int J Wavelets Multiresolution Inf Process 14(4):1650021

    Article  MathSciNet  MATH  Google Scholar 

  43. Mallat S (1999) A wavelet tour of signal processing. Academic Press, Cambridge

    MATH  Google Scholar 

  44. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  MATH  Google Scholar 

  45. Munteanu A, Cornelis J, Van der Auwera G, Cristea P (1999) Wavelet image compression-the quadtree coding approach. IEEE Trans Inf Technol Biomed 3 (3):176–185

    Article  Google Scholar 

  46. Ouafi A, Ahmed AT, Baarir Z, Zitouni A (2008) A modified embedded zerotree wavelet (mezw) algorithm for image compression. J Math Imaging Vision 30 (3):298–307

    Article  Google Scholar 

  47. Patel A, Gupta S (2017) Analysis of wavelet based image compression technique: A survey

  48. Pennebaker WB, Mitchell JL (1992) JPEG: Still Image data compression standard. Springer Science & Business Media, Verlag US

    Google Scholar 

  49. Rani N, Bishnoi S (2014) Comparative analysis of image compression using dct and dwt transforms. Int J Comput Sci Mobile Comput 3:990–996

    Google Scholar 

  50. Rao K (1990) Yip, discrete cosine transform, algorithm, advantage and applications. Academic, New York

    Google Scholar 

  51. Rasool U, Mairaj S, Nazeer T, Ahmed S Wavelet based image compression techniques: Comparative analysis and performance evaluation

  52. Rawat P, Nautiyal A, Chamoli S (2015) Performance evaluation of gray scale image using ezw and spiht coding schemes. Int J Comput Appl 15:124

    Google Scholar 

  53. Rawat S, Verma AK (2017) Survey paper on image compression techniques

  54. Rehna V, Kumar M (2012) Wavelet based image coding schemes: A recent survey. arXiv:1209.2515

  55. Rema N, Oommen BA, Mythili P (2015) Image compression using spiht with modified spatial orientation trees. Procedia Comput Sci 46:1732–1738

    Article  Google Scholar 

  56. Said A, Pearlman WA (1996) A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circ Syst Video Technol 6(3):243–250

    Article  Google Scholar 

  57. Saroya N, Kaur P (2014) Analysis of image compression algorithm using dct and dwt transforms. Int J Adv Res Comput Sci Softw Eng 4(2):897–900

    Google Scholar 

  58. Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):3445–3462

    Article  MATH  Google Scholar 

  59. Singh P, Singh P (2011) Design and implementation of ezw & spiht image coder for virtual images. Int J Comput Sci Secur (IJCSS) 5(5):433

    Google Scholar 

  60. Singh R, Srivastava V (2012) Performance comparison of arithmetic and huffman coder applied to ezw codec. In: 2012 2nd international conference on power control and embedded systems

  61. Suruliandi A, Raja S (2015) Empirical evaluation of ezw and other encoding techniques in the wavelet-based image compression domain. Int J Wavelets Multiresolution Inf Process 13(2):1550012

    Article  MathSciNet  MATH  Google Scholar 

  62. Sweldens W (1996) The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl Comput Harmon Anal 3(2):186–200

    Article  MathSciNet  MATH  Google Scholar 

  63. Taubman D (2000) High performance scalable image compression with ebcot. IEEE Trans Image Process 9(7):1158–1170

    Article  Google Scholar 

  64. Unser M, Aldroubi A, Eden M (1993) A family of polynomial spline wavelet transforms. Signal Process 30(2):141–162

    Article  MATH  Google Scholar 

  65. Vaidyanathan PP, Vrcelj B (2001) Biorthogonal partners and applications. IEEE Trans Signal Process 49(5):1013–1027

    Article  MathSciNet  MATH  Google Scholar 

  66. Wang J, Cui Y (2012) Coefficient statistic based modified spiht image compression algorithm. In: Advances in computer science and information engineering. Springer, pp 595–600

  67. Wang W, Wang G, Zhang T (2009) A new quantization improvement of spiht for wavelet image coding. In: Advances in neural networks–ISNN 2009, Springer, pp 921–927

  68. Witten IH, Neal RM, Cleary JG (1987) Arithmetic coding for data compression. Commun ACM 30(6):520–540

    Article  Google Scholar 

  69. Wu X (1997) Lossless compression of continuous-tone images via context selection, quantization, and modeling. IEEE Trans Image Process 6(5):656–664

    Article  Google Scholar 

  70. Xie X, Liu S, Yang C, Yang Z, Xu J, Zhai X (2017) The application of smart materials in tactile actuators for tactile information delivery. arXiv:1708.07077

  71. Yan C, Xie H, Liu S, Yin J, Zhang Y, Dai Q (2018) Effective uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229

    Article  Google Scholar 

  72. Yan C, Xie H, Yang D, Yin J, Zhang Y, Dai Q (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295

    Article  Google Scholar 

  73. Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) A highly parallel framework for hevc coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576

    Article  Google Scholar 

  74. Yan C, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F (2014) Efficient parallel framework for hevc motion estimation on many-core processors. IEEE Trans Circ Syst Video Technol 24(12):2077–2089

    Article  Google Scholar 

  75. Zettler WR, Huffman JC, Linden DC (1990) Application of compactly supported wavelets to image compression: In: Electronic Imaging’90, Santa Clara, 11-16 Feb’92. International Society for Optics and Photonics, pp 150–160

  76. Zhang H, Zhang X, Cao S (2000) Analysis and evaluation of some image compression techniques. In: The fourth international conference/exhibition on high performance computing in the Asia-Pacific region, 2000. Proceedings, vol 2. IEEE, pp 799–803

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Boujelbene.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boujelbene, R., Jemaa, Y.B. & Zribi, M. A comparative study of recent improvements in wavelet-based image coding schemes. Multimed Tools Appl 78, 1649–1683 (2019). https://doi.org/10.1007/s11042-018-6262-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6262-4

Keywords

Navigation