Skip to main content

Advertisement

Log in

Bilateral adaptive quantization in HEVC

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we proposed an adaptive quantization algorithm for High Efficiency Video Coding (HEVC) to boost the encoding performance. The transform coefficients in a Transform Unit (TU) inherit the energy concentration property. However, they are equally quantized before entropy coding. With equal quantization technique, the energy distribution of transform coefficients and the scanning pattern following the quantization stage is not properly considered. In order to quantize the coefficients adaptively, we proposed an improved algorithm to quantize the coefficients. For each coefficient, both the magnitude and its ordinal number scanned in entropy coding process are taken into account. The quantization parameter of each coefficient in a TU is adaptively calculated by the bilateral factors accordingly. We tested our method on the latest HM16.0. An average performance of -0.27% on BD-Rate and 7.07% computing time saving are achieved in the case of the commonly used Low Delay P configuration, which demonstrated the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bjontegarrd G (2001) Calculation of Average PSNR Differences between RD-curves. VCEG-m33

  2. Budagavi M, Fuldseth A, Bjontegaard G, Sze V, Sadafale M (2013) Core transform design in the high efficiency video coding (HEVC) Standard. IEEE J Sel Top Signal Process 7(6):1029–1041

    Article  Google Scholar 

  3. Budagavi M, Fuldseth A, Bjøntegaard G (2014) HEVC Transform and Quantization. In: High Efficiency Video Coding (HEVC) Algorithms and Architectures. Springer, pp 141–169

  4. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst Man Cybern: Syst 43(4):996–1002

    Article  Google Scholar 

  5. Gweon R, Lee Y-L (2012) N-level quantization in HEVC. In: 2012 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp 1–5

  6. He J, Yang F (2015) High-speed implementation of rate-distortion optimized quantization for h.264/AVC. Signal Image Video Process 9(3):543–551

    Article  Google Scholar 

  7. Institute HH Joint Collaborative Team on Video Coding (JCT-VC), HEVC Test Model (HM) 16.0. Available at https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.0/(2018/01/12)

  8. Kim IK, Min J, Lee T, Han WJ, Park JH (2012) Block partitioning structure in the HEVC standard. IEEE Trans Circ Syst Video Technol 22(12):1697–1706

    Article  Google Scholar 

  9. Kokkonis G, Psannis KE, Roumeliotis M, Ishibashi Y (2016) Efficient algorithm for transferring a real-time HEVC stream with haptic data through the internet. J Real-Time Image Proc 12(2):343–355

    Article  Google Scholar 

  10. Lee H, Yang S, Park Y, Jeon B (2016) Fast quantization method with simplified rate–distortion optimized quantization for an HEVC encoder. IEEE Trans Circ Syst Video Technol 26(1):107–116

    Article  Google Scholar 

  11. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: Recognizing Complex Activities from Sensor Data. In: Proceedings of the 24th International Conference on Artificial Intelligence, pp 1617–1623

  12. Liu T, Tao D, Xu D (2016) Dimensionality-dependent Generalization Bounds for k-Dimensional Coding Schemes. Neural Comput 28(10):2213–2249

    Article  MathSciNet  Google Scholar 

  13. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  14. Liu T, Gong M, Tao D (2017) Large-cone nonnegative matrix factorization. IEEE Trans Neural Netw Learn Syst 28(9):2129–2142

    MathSciNet  Google Scholar 

  15. Memos VA, Psannis KE (2016) Encryption algorithm for efficient transmission of HEVC media. J Real-Time Image Proc 12(2):473–482

    Article  Google Scholar 

  16. Memos VA, Psannis KE, Ishibashi Y, Kim B-G, Gupta B (2018) An efficient algorithm for media-based surveillance system (EAMSus) in IoT smart city framework. Futur Gener Comput Syst 83:619–628

    Article  Google Scholar 

  17. Nam J, Sim D, Bajić IV (2012) HEVC-based adaptive quantization for screen content videos. In: 2012 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp 1–4

  18. Nguyen T, Helle P, Winken M, Bross B, Marpe D, Schwarz H, Wiegand T (2013) Transform coding techniques in HEVC. IEEE J Sel Top Signal Process 7(6):978–989

    Article  Google Scholar 

  19. Paul M, Antony A, Sreelekha G (2014) Performance improvement of HEVC using Adaptive Quantization. In: 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp 1428–1433

  20. Prangnell L, Sanchez V, Vanam R (2015) Adaptive quantization by soft thresholding in HEVC. In: Picture Coding Symposium (PCS) 2015, pp 35–39

  21. Psannis KE, Ishibashi Y (2006) Impact of video coding on delay and jitter in 3G wireless video multicast services. EURASIP J Wirel Commun Netw 2006(1):1–7

    Article  Google Scholar 

  22. Sole J, Joshi R, Nguyen N, Ji T, Karczewicz M, Clare G, Henry F, Duenas A (2012) Transform coefficient coding in HEVC. IEEE Trans Circ Syst Video Technol 22(12):1765–1777

    Article  Google Scholar 

  23. Stankowski J, Korzeniewski C, Domanski M, Grajek T (2015) Rate-distortion optimized quantization in hevc: Performance limitations. In: 2015 Picture Coding Symposium (PCS), pp 85–89

  24. Sullivan G (2005) Adaptive quantization encoding technique using an equal expected-value rule. Joint video team (JVT) of ISO/IEC MPEG & ITU-t VCEG JVT-n011

  25. Sullivan G, Ohm J-RR, Han WJ, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circ Syst Video Technol 22 (12):1649–1668

    Article  Google Scholar 

  26. Wang M, Ngan KN, Li H, Zeng H (2015) Improved block level adaptive quantization for high efficiency video coding. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp 509–512

  27. Wang J, Yin H, Gao Z, Zhang X (2016) Improved rate distortion optimized quantization for HEVC with adaptive thresholding. In: 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp 1–4

  28. Wiegand T, Sullivan G, Bjontegaard G, Luthra A (2003) Overview of the h.264/AVC video coding standard. IEEE Trans Circ Syst Video Technol 13(7):560–576

    Article  Google Scholar 

  29. Yang F, Zhou Y, He J (2015) High-speed implementation of rate-distortion optimised quantisation for h.265/HEVC. IET Image Process 9(8):652–661

    Article  Google Scholar 

  30. Yeo C, Tan HL, Tan YH (2013) SSIM-Based adaptive quantization in HEVC. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1690–1694

Download references

Acknowledgements

This work has been supported by NSFC Grant No. 61401337, 61222101, the Key Research and Development Program of Shaanxi province (2017KJXX-50), the 111 Project (B08038), and Key Laboratory of Infrared System Detection and Imaging Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences. We would like to thank Ms. Yuan Jia from ISN lab of Xidian Univsity for her great help on paper revision, language editing and proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Song.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Song, R. Bilateral adaptive quantization in HEVC. Multimed Tools Appl 78, 2385–2399 (2019). https://doi.org/10.1007/s11042-018-6312-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6312-y

Keywords

Navigation