Skip to main content
Log in

Robust visual tracking based on convolutional neural network with extreme learning machine

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, deep learning has attracted substantial attention as a promising solution to many problems in computer vision. Among various deep learning architectures, convolutional neural network (CNN) has demonstrated superior performance as a feature learning method. In this paper, we present a novel hybrid model of CNN and extreme learning machine (ELM) for object tracking. Training a conventional CNN requires a substantial amount of computation and a large dataset. ELM randomly generates the parameters of hidden layers and calculates network weights between output and hidden layers via the regularized least-square method, thereby dramatically reducing the learning time while producing accurate results with minimal training data. Therefore, we integrate the ELM auto-encoder architecture into the CNN model. In addition, an effective updating scheme is designed for the model training to overcome the tracking drift problem. The joint CNN-ELM tracker is robust to object variations such as illumination, occlusion, and rotation in a video sequence. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favourably compared to several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072

    Article  Google Scholar 

  2. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  3. Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  4. Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  Google Scholar 

  5. Black MJ, Jepson AD (1996) EigenTracking: Robust matching and tracking of articulated objects using a view-based representation. Proc. ECCV, Cambridge, pp 329–342

    Google Scholar 

  6. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577

    Article  Google Scholar 

  7. Duan MX, Li KL, Li KQ (2018) An Ensemble CNN2ELM for Age Estimation. IEEE Trans on Information Forensics and Security 18(3):758–772

    Article  Google Scholar 

  8. Fan J, Xu W, Wu Y, Gong Y (2010) Human tracking using convolutional neural networks. IEEE Trans Neural Network 21(10):1610–1623

    Article  Google Scholar 

  9. Gao L, Guo Z, Zhang H, Xu X, Shen HT (2017) Video Captioning With Attention-Based LSTM and Semantic Consistency. IEEE Trans on Multimedia 19(9):2045–2055

    Article  Google Scholar 

  10. Gao J, Ling H, Hu W, Xing J (2014) Transfer learning based visual tracking with Gaussian processes regression. Proc. 13th Eur. Conf. Comput. Vis, Zurich, pp 188–203

    Google Scholar 

  11. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. Proc. IEEE Conf. Comput. Vis. Pattern Recognit, Columbus, pp 580–587

    Google Scholar 

  12. Grabner H, Bischof H (2006) On-line boosting and vision. Proc. IEEE Conf. Comput. Vis. Pattern Recognit, New York, pp 260–267

    Google Scholar 

  13. Hare S, Saffari A, Torr PHS (2011) Struck: Structured output tracking with kernels. Proc. ICCV, Barcelona, pp 263–270

    Google Scholar 

  14. Henriques JF, Caseiro R, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. Proc. ECCV, Florence, pp 702–715

    Google Scholar 

  15. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596

    Article  Google Scholar 

  16. Huang GB (2014) An insight into extreme learning machines: Random neurons, random features and kernels. Cogn Comput 6(3):376–390

    Article  Google Scholar 

  17. Huang G, Huang GB, Song S (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48

    Article  Google Scholar 

  18. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst,Man, Cybern B, Cybern 42(2):513–529

    Article  Google Scholar 

  19. Kalal Z, Matas J, Mikolajczyk K (2010) P-N learning: Bootstrapping binary classifiers by structural constraints. Proc. IEEE Conf. Computer Visual Pattern Recognition, San Francisco, pp 49–56

    Google Scholar 

  20. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  21. Kim J, Kim JH, Jang GL, Lee M (2017) Fast Learning method for Convolutional neural networks using extreme learning machine and its application to lane detection. Neural Netw 87:109–121

    Article  Google Scholar 

  22. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Proc. NIPS, Lake Tahoe, pp 1097–1105

    Google Scholar 

  23. Leichter I (2012) Mean shift trackers with cross-bin metrics. IEEE Trans Pattern Anal Mach Intell 34(4):695–706

    Article  Google Scholar 

  24. Li X, Hu W, Shen C, Zhang Z, Dick A, Van Den Hengel A (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol 4:1–58

    Google Scholar 

  25. Li H, Li Y, Porikli F (2014) Robust online visual tracking with a single convolutional neural network. Proc. 12th Asian Conf. Comput. Vis, Singapore, pp 194–209

    Google Scholar 

  26. Li H, Shen C, Shi Q (2011) Real-time visual tracking using compressive sensing. Proc. IEEE Conf. Comput. Vis. Pattern Recognit, Colorado Springs, pp 1305–1312

    Google Scholar 

  27. Martinel N, Micheloni C, Foresti LG (2015) The evolution of neural learning systems: a novel architecture combining the strengths of NTs, CNNs, and ELMs. IEEE Systems, Man, Cybernetics Magazine 7:17–26

    Article  Google Scholar 

  28. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

    Article  Google Scholar 

  29. Ross DA, Lim J, Lin R-S, Yang M-H (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  30. Serre T, Wolf L, Beleschi S, Riesenhuber M, Poggio T (2007) Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 29(3):411–426

    Article  Google Scholar 

  31. Shen C, Brooks MJ, Van den Hengel A (2007) Fast global kernel density mode seeking: Applications to localization and tracking. IEEE Trans Image Process 16(5):1457–1469

    Article  MathSciNet  Google Scholar 

  32. Song H (2014) Robust visual tracking via online informative feature selection. Electron Lett 50(25):1931–1933

    Article  Google Scholar 

  33. Song J, Gao L, Nie F, Shen HT et al (2016) Optimized Graph Learning Using Partial Tags and Multiple Features for Image and Video Annotation. IEEE Trans Image Process 25(11):4999–5011

    Article  MathSciNet  Google Scholar 

  34. Song J, Zhang H, Li X, Gao L, Wang M, Hong R (2018) Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder. IEEE Trans Image Process 27(7):3210–3221

    Article  MathSciNet  Google Scholar 

  35. Wang X, Gao L, Song J, Zhen X, Sebe N, Shen HT (2018) Deep appearance and motion learning for egocentric activity recognition. Neurocomputing 275:438–447

    Article  Google Scholar 

  36. Wang X, Gao L, Wang P, Sun X, Liu X (2018) Two-Stream 3-D convNet Fusion for Action Recognition in Videos With Arbitrary Size and Length. IEEE Trans on Multimedia 20(3):634–644

    Article  Google Scholar 

  37. Wang L, Liu T, Wang G, Chan KL, Yang Q (2015) Video tracking using learned hierarchical features. IEEE Trans Image Process 24(4):1424–1435

    Article  MathSciNet  Google Scholar 

  38. Wang B, Tang L, Yang J, Zhao B, Wang S (2015) Visual tracking based on extreme learning machine and sparse representation. Sensors 15:26877–26905

    Article  Google Scholar 

  39. Wang N, Yeung D-Y (2013) Learning a deep compact image representation for visual tracking. Proc. Adv. Neural Inf. Process. Syst, Lake Tahoe, pp 809–817

    Google Scholar 

  40. Wen L, Cai Z, Lei Z, Yi D, Li SZ (2014) Robust online learned spatio-temporal context model for visual tracking. IEEE Trans Image Process 23(2):785–796

    Article  MathSciNet  Google Scholar 

  41. Weng Q, Mao Z, Lin J, Guo W (2017) Land-Use Classification via Extreme Learning Classifier Based on Deep Convolutional Features. IEEE Geosci Remote Sens Lett 14(5):704–708

    Article  Google Scholar 

  42. Xing J, Gao J, Li B, Hu W, Yan S (2013) Robust object tracking with online multi-lifespan dictionary learning. in Proc. IEEE Int. Conf. Computer Vision (ICCV), pp. 665–672

  43. Yang Y, Wang Y, Yuan X (2012) Bidirectional extreme learning machine for regression problem and its learning effectiveness. IEEE Trans Neural Network Learning System 23(9):1498–1505

    Article  Google Scholar 

  44. Yilmaz A, Javed O, Shah M (2006) Object tracking: A survey. ACM Comput Surv 38(4):1–45

    Article  Google Scholar 

  45. Yoo Y, Oh SY (2016) Fast Training of Convolutional Neural Network Classifiers through Extreme Learning machines. in Proc. IEEE Int. Conf. Neural Networks, pp. 1702–1708

  46. Zhang T, Ghanem B, Liu S, Ahuja N (2013) Robust visual tracking via structured multi-task sparse learning. Int J Comput Vis 101(2):367–383

    Article  MathSciNet  Google Scholar 

  47. Zhang S, Lan X, Qi Y, Yuen PC (2017) Robust Visual Tracking via Basis Matching. IEEE Trans. Circuits and systems for video technology 27(3):421–430

    Article  Google Scholar 

  48. Zhang D, Maei H, Wang X, Wang YF (2017) Deep Reinforcement Learning for Visual Object Tracking in Videos. arXiv:1701.08936v2

  49. Zhang S, Yao H, Sun X, Lu X (2013) Sparse coding based visual tracking: Review and experimental comparison. Pattern Recogn 46(7):1772–1788

    Article  Google Scholar 

  50. Zhang K, Zhang L, Yang M-H (2012) Real-time compressive tracking. Proc. ECCV, Florence, pp 864–877

    Google Scholar 

  51. Zhong W, Lu H, Yang MH (2012) Robust object tracking via sparsity based collaborative model. Proc. IEEE Conf. Computer Visual Pattern Recognition, Providence, pp 1838–1845

    Google Scholar 

  52. Zhong W, Lu H, Yang M-H (2014) Robust object tracking via sparse collaborative appearance model. IEEE Trans Image Process 23(5):2356–2368

    Article  MathSciNet  Google Scholar 

  53. Zhou SK, Chellappa R, Moghaddam B (2004) Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans Image Process 13(11):1491–1506

    Article  Google Scholar 

  54. Zhou T, Lu Y, Di H (2017) Locality-Constrained Collaborative Model for Robust Visual Tracking. IEEE Trans. Circuits and Systems for Video Technology 27(2):313–325

    Article  Google Scholar 

  55. Zhou X, Xie L, Zhang P, Zhang Y (2015) An ensemble of deep neural networks for object tracking. Proc IEEE Int Conf Image Process:843–847

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61471154) and Anhui Province science and technology project (1704d0802181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Wang, X. & Yan, X. Robust visual tracking based on convolutional neural network with extreme learning machine. Multimed Tools Appl 78, 7543–7562 (2019). https://doi.org/10.1007/s11042-018-6491-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6491-6

Keywords

Navigation