Skip to main content
Log in

Improving sparse representation-based image classification using truncated total least squares

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In the field of face recognition, the Sparse Representation-based Classification (SRC) method can effectively deal with many common problems such as face occlusion, lighting and expression changes. Truncated Total Least Squares (TTLS) method is determined by using an optimal cutoff factor k. The choice of truncation factor regularization parameters directly affects the quality of the solution. The truncation of total least squares is suitable for solving the linear problems of the same kind. According to this motivation, a classification method TSRC based on the truncation representation is proposed. The truncated global least squares regularization is fused with sparse representation to optimize the representation coefficients. We performed a large number of experiments with this method on several popular benchmark datasets, and the results showed that the sparse representation can be improved if it is combined with the truncation. In most cases, the proposed truncation-based classification method has higher classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. L. Cambridge (2016) The orl database of faces, http://www.cl.cam.ac.uk /research/dtg/attarchive/ facedatabase.html, online; accessed 17-May-2016

  2. Baglama J, Kane M, Lewis B, Poliakov A (2015) Efficient thresholded correlation using truncated singular value decomposition. Statistics

  3. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  4. Bhotto MZA, Ahmad MO, Swamy MNS (2015) An improved fast iterative shrinkage thresholding algorithm for image deblurring. Siam J Imag Sci 8(3):1640–1657

    Article  MathSciNet  Google Scholar 

  5. C. V. Online (2016) Georgia tech face database, http://www.computervisiononline.com/dataset/1105138700, online; accessed 17-May-2016

  6. Cai S, Zhang L, Zuo W, Feng X (2016) A probabilistic collaborative representation based approach for pattern classification. IEEE conference on computer vision and pattern recognition (pp.2950-2959). IEEE computer society

  7. Chen Y, Ma J, Feng Q, Luo L, Shi P, Chen W (2008) Nonlocal prior bayesian tomographic reconstruction. J Math Imag Vision 30(2):133–146

    Article  Google Scholar 

  8. Chen Y, Shi L, Feng Q, Yang J, Shu H, Luo L et al (2014) Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans Med Imaging 33(12):2271–2292

    Article  Google Scholar 

  9. Chen Y, Zhang Y, Yang J, Cao Q, Yang G, Chen J et al (2016) Curve-like structure extraction using minimal path propagation with back-tracing. IEEE Trans Image Process Publ IEEE Signal Process Soc 25(2):988–1003

    Article  Google Scholar 

  10. Chen Y, Zhang Y, Yang J, Shu H, Luo L, Coatrieux JL et al (2018) Structure-adaptive fuzzy estimation for random-valued impulse noise suppression. IEEE Trans Circ Syst Video Technol 28(2):414–427

    Article  Google Scholar 

  11. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low- and high-dimensional approaches. IEEE Trans Syst Man Cybernet Part B 43(4):996–1002

    Article  Google Scholar 

  12. Fierro RD, Golub GH, Hansen PC, O'Leary DP (2006) Regularization by truncated total least squares. SIAM Jscicomp 18(4):124

    MathSciNet  MATH  Google Scholar 

  13. Gao S, Tsang WH, Chia LT (2010) Kernel Sparse Representation for Image Classification and Face Recognition. Computer Vision – ECCV 2010. DBLP

  14. Gratton S, Titley-Peloquin D, Ilunga JT (2013) Sensitivity and conditioning of the truncated total least squares solution. SIAM J Matrix Anal Appl 34(34):1257–1276

    Article  MathSciNet  Google Scholar 

  15. Huang S, Zhang H, Pižurica A (2017) A robust sparse representation model for hyperspectral image classification. Sensors 17(9):2087

    Article  Google Scholar 

  16. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: recognizing complex activities from sensor data. International conference on artificial intelligence, AAAI press, 1617–1623

  17. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  18. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. Thirtieth AAAI Conference on Artificial Intelligence, AAAI Press, 1266–1272

  19. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum ADS (2016) Urban Water Quality Prediction based on Multi-task Multi-view Learning. Proceedings of the 25th International Joint Conference on Artificial Intelligence 2016

  20. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. Proc Thirtieth AAAI Conf Artif Intell (AAAI-16)

  21. Liu J, Ma J, Zhang Y, Chen Y, Yang J, Shu H et al (2017) Discriminative feature representation to improve projection data inconsistency for low dose CT imaging. IEEE Trans Med Imaging 36(12):2499–2509

    Article  Google Scholar 

  22. Liu J, Hu Y, Yang J, Chen Y, Shu H, Luo L et al (2018) 3D feature constrained reconstruction for low dose CT imaging. IEEE Trans Circ Syst Video Technol 28(5):1232–1247

    Article  Google Scholar 

  23. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsu-pervised physical activity recognition using smartphone accelerome-ters. Multimed Tools Appl 76(8):10701–10719

    Article  Google Scholar 

  24. Peng Y, Pan Z, Zheng Z, Li X (2016) Hyperspectral image classification by fusion of multiple classifiers. Int J Database Theory Appl 9(2):183–192

    Article  Google Scholar 

  25. Putten PVD, Someren MV (2000) Coil challenge 2000: the insurance company case

  26. Senthilkumar (2016) Senthil irtt face database version 1.2, http://www.geocities.ws/senthilirtt/Senthil%20IRTT%20Face%20Database%20Version%201.2, online; accessed 17-May-2016

  27. Singh G, Chhabra I (2016) Integrating global zernike and local discriminative hog features for face recognition. International Journal of Image & Graphics 16(04):71–58

    Article  Google Scholar 

  28. Sun T, Cheng L (2016) Reweighted fast iterative shrinkage thresholding algorithm with restarts for l 1 - l 1, minimisation. Signal Process Iet 10(1):28–36

    Article  Google Scholar 

  29. T. N. I. of Standards, T. (NIST) (2016) The color feret database, http://www.nist.gov/itl/iad/ig/colorferet.cfm, online; accessed 17-May-2016

  30. Wang K, Qi G, Zhu Z, Chai Y (2017) A novel geometric dictionary construction approach for sparse representation based image fusion. Entropy 19(7):306

    Article  Google Scholar 

  31. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210

    Article  Google Scholar 

  32. Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circ Syst Video Technol 21(9):1255–1262

    Article  MathSciNet  Google Scholar 

  33. Xu Y, Zhu X, Li Z, Liu G, Lu Y, Liu H (2013) Using the original and 'symmetrical face' training samples to perform representation based two-step face recognition. Pattern Recogn 46(4):1151–1158

    Article  Google Scholar 

  34. Xu Y, Zhu Q, Fan Z, Zhang D, Mi J, Lai Z (2013) Using the idea of the sparse representation to perform coarse-to-fine face recognition. Inf Sci 238(7):138–148

    Article  MathSciNet  Google Scholar 

  35. Xu Y, Zhang B, Zhong Z (2015) Multiple representations and sparse representation for image classification. Pattern Recogn Lett 68:9–14

    Article  Google Scholar 

  36. Xu Y, Fang X, Wu J, Li X, Zhang D (2016) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process Publ IEEE Signal Process Soc 25(2):850–863

    Article  MathSciNet  Google Scholar 

  37. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process Publ IEEE Signal Process Soc 19(11):2861

    Article  MathSciNet  Google Scholar 

  38. Yang AY, Zhou Z, Balasubramanian AG, Sastry SS, Ma Y (2013) Fast l1-minimization algorithms for robust face recognition. IEEE Trans Image Process Publ IEEE Signal Process Soc 22(8):3234

    Article  Google Scholar 

  39. Zeng S, Yang X, Gou J (2016) Multiplication fusion of sparse and col-laborative representation for robust face recognition. Multimed Tools Appl: 1–19

  40. Zeng S, Gou J, Yang X (2017) Improving sparsity of coefficients for robust sparse and collaborative representation-based image classifica-tion. Neural Comput Appl: 1–14

  41. Zhang L, Zhou WD, Chang PC, Liu J, Yan Z, Wang T et al (2015) Kernel sparse representation-based classifier. Multimed Tools Appl 74(1):123–137

    Article  Google Scholar 

  42. Zhang Z, Xu Y, Yang J, Li X, Zhang D (2017) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the national social science fund in China (Grant No.15BTJ024), the planning fund project of humanities and social science research in Chinese Ministry of Education (Grant No.14YJAZH040), the teaching reform of higher education in undergraduate colleges and universities from Guangdong province (Grant No. [2016]236-502, [2015]173-588), Huizhou Municipal Science and Technology Project Fund (Grant No. 2016X0422037, 2017C0405021), the Field Scientific Research Project of Huizhou University (Grant No.hzu201716), Indigenous Innovation’s Capability Development Program of Huizhou University (Grant No. hzu201815), Guangdong Provincial Key Laboratory of Technology and Finance & Big Data Analysis(Grant No.2017B030301010), Guangdong Key Research Base of Technology and Finance(Grant No.2014B030303005), Platform of Credit Financing and Trade for Guangdong Technological Enterprises(Grant No.2014B080807035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Jiang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Jiang, H., Wang, H. et al. Improving sparse representation-based image classification using truncated total least squares. Multimed Tools Appl 78, 12007–12026 (2019). https://doi.org/10.1007/s11042-018-6740-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6740-8

Keywords

Navigation