Skip to main content

Advertisement

Log in

Age and gender-based human face reconstruction from single frontal image

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We present an approach for the human face reconstruction from a single frontal image for the use in forensic anthropology when the subject’s age and gender is known. In our approach we build a database of several depth images per each age and gender group pair, marked with facial landmarks. To reconstruct a 3D facial model from an unknown frontal image we search the most similar face in the depth database based on the automatically detected landmarks and assign its depth to the model. In the evaluation part, we compared our approach to a recent automatic convolutional neural network based algorithm and a semi-automatic approach, where landmarks are required to be detected manually. In contrast to other tested approaches our algorithm can estimate all major components, such as eyes, nose and mouth, evenly. Thanks to the external depth database, it can also reconstruct human faces from images with partial facial occlusions and uneven lighting. Additionally, we have found that a single depth image provides a good approximation of the human face and a combination of multiple precomputed depth images has a little impact on the final 3D face reconstruction result. Speed measurements show that our algorithm provides a quick and a fully automatic way to reconstruct a human face from a single frontal image for the use in forensic anthropology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Available at http://fidentis.cz

  2. Available at: https://facegen.com/

References

  1. Adm MB, Said AM (2011) 3D human face reconstruction from single image using interactive shape from shading. In: National Postgraduate Conference (NPC), 2011 (pp. 1-7). IEEE. 10.1109/NatPC.2011.6136297

  2. Ahmed A, Farag A, Starr T (2008) A new symmetric shape from shading algorithm with an application to 3-D face reconstruction. In: Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on (pp. 201-204). IEEE. 10.1109/ICIP.2008.4711726

  3. Blanz, V, Vetter T (1999) A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques (pp. 187-194). ACM Press/Addison-Wesley Publishing Co. 10.1145/311535.311556

  4. Castelan M, Van Horebeek J (2009) Relating intensities with three-dimensional facial shape using partial least squares. IET Comput Vis 3(2):60–73. https://doi.org/10.1049/ietcvi.2008.0060

    Article  Google Scholar 

  5. Castelan M, Smith WA, Hancock ER (2007) A coupled statistical model for face shape recovery from brightness images. IEEE Trans Image Process 16(4):1139–1151. https://doi.org/10.1109/TIP.2006.891351

    Article  MathSciNet  Google Scholar 

  6. Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008). Meshlab: an open-source mesh processing tool. In: Eurographics Italian chapter conference (Vol. 2008, pp. 129-136). 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

  7. Cristinacce D, Cootes TF (2007) Boosted regression active shape models. In: BMVC (Vol. 2, pp. 880-889). 10.5244/C.21.79

  8. Dantone M, Gall J, Fanelli G, Van Gool L (2012) Real-time facial feature detection using conditional regression forests. In: Computer vision and pattern recognition (CVPR), 2012 IEEE conference on (pp. 2578-2585). IEEE. 10.1109/CVPR.2010.5539996

  9. Du S, Zheng N, Xiong L, Ying S, Xue J (2010) Scaling iterative closest point algorithm for registration of m–D point sets. J Vis Commun Image Represent 21(5-6):442–452. https://doi.org/10.1016/j.jvcir.2010.02.005

    Article  Google Scholar 

  10. Enlow DH, Hans MG (1996) Facial form and pattern. Essentials of Facial Growth:122–145

  11. Evison M, Dryden I, Fieller N, Mallett X, Morecroft L, Schofield D, Bruegge RV (2010) Key parameters of face shape variation in 3D in a large sample. J Forensic Sci 55(1):159–162. https://doi.org/10.1111/j.1556-4029.2009.01213.x

    Article  Google Scholar 

  12. Fetter V (1967) Antropologie. Academia

  13. Furmanová K, Urbanová P, Kozlíková B (2017) AnthroVis: visual analysis of 3D mesh ensembles for forensic anthropology. In: Proceedings of the 33rd Spring Conference on Computer Graphics (p. 17). ACM. 10.1145/3154353.3154363

  14. Hassner T (2013) Viewing real-world faces in 3D. In: Proceedings of the IEEE International Conference on Computer Vision (pp. 3607-3614). 10.1109/ICCV.2013.448

  15. Hassner T, Basri R (2006) Example based 3D reconstruction from single 2D images. In: Computer Vision and Pattern Recognition Workshop, 2006. CVPRW'06. Conference on (pp. 15-15). IEEE, 10.1109/CVPRW.2006.76

  16. Heo J, Savvides M (2012) 3-D generic elastic models for fast and texture preserving 2-D novel pose synthesis. IEEE Transactions on Information Forensics and Security 7(2):563–576. https://doi.org/10.1109/TIFS.2012.2184755

    Article  Google Scholar 

  17. Hu Y, Jiang D, Yan S, Zhang L (2004) Automatic 3D reconstruction for face recognition. In Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on (pp. 843-848). IEEE. 10.1109/AFGR.2004.1301639

  18. Jackson AS, Bulat A, Argyriou V, Tzimiropoulos G (2017) Large pose 3D face reconstruction from a single image via direct volumetric CNN regression. In: 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 1031-1039). IEEE.

  19. Jandová M, Urbanová P (2016) The relationship between facial morphology, body measurements and socio-economic factors. Anthropol Rev 79(2):181–200. https://doi.org/10.1515/anre-2016-0014

    Article  Google Scholar 

  20. Jiang D, Hu Y, Yan S, Zhang L, Zhang H, Gao W (2005) Efficient 3D reconstruction for face recognition. Pattern Recogn 38(6):787–798. https://doi.org/10.1016/j.patcog.2004.11.004

    Article  Google Scholar 

  21. Jiang L, Zhang J, Deng B, Li H, Liu L (2018) 3D face reconstruction with geometry details from a single image. IEEE Trans Image Process 27(10):4756–4770. https://doi.org/10.1109/TIP.2018.2845697

    Article  MathSciNet  MATH  Google Scholar 

  22. Jourabloo A, Liu X (2017) Pose-invariant face alignment via CNN-based dense 3D model fitting. Int J Comput Vis 124(2):187–203. https://doi.org/10.1007/s11263-017-1012-z

    Article  MathSciNet  Google Scholar 

  23. Kemelmacher I, Basri R (2006) Molding face shapes by example. In: European Conference on Computer Vision (pp. 277-288). Springer, Berlin. 10.1007/11744023 22

    Chapter  Google Scholar 

  24. Kemelmacher-Shlizerman I, Basri R (2011) 3D face reconstruction from a single image using a single reference face shape. IEEE Trans Pattern Anal Mach Intell 33(2):394–405. https://doi.org/10.1109/TPAMI.2010.63

    Article  Google Scholar 

  25. King DE (2009) Dlib-ml: A machine learning toolkit. J Mach Learn Res 10(Jul):1755–1758

    Google Scholar 

  26. Klare BF, Burge MJ, Klontz JC, Bruegge RWV, Jain AK (2012) Face recognition performance: Role of demographic information. IEEE Transactions on Information Forensics and Security 7(6):1789–1801. https://doi.org/10.1109/TIFS.2012.2214212

    Article  Google Scholar 

  27. Loop C (1987) Smooth subdivision surfaces based on triangles. Master's thesis, University of Utah, Department of Mathematics

  28. Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, … Worek W (2005) Overview of the face recognition grand challenge. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on (Vol. 1, pp. 947-954). IEEE

  29. Pighin F, Hecker J, Lischinski D, Szeliski R, Salesin DH (2006) Synthesizing realistic facial expressions from photographs. In: ACM SIGGRAPH 2006 Courses (p. 19). ACM. 10.1145/280814.280825

  30. Reiter M, Donner R, Langs G, Bischof H (2006) 3D and infrared face reconstruction from RGB data using canonical correlation analysis. In: Pattern Recognition, 2006. ICPR 2006. 18th International Conference on (Vol. 1, pp. 425-428). IEEE. 10.1109/ICPR.2006.24

  31. Richardson E, Sela M, Kimmel R (2016) 3D face reconstruction by learning from synthetic data. In: 3D Vision (3DV), 2016 Fourth International Conference on (pp. 460-469). IEEE.

  32. Saeed A, Al-Hamadi A, Neumann H (2018) Facial point localization via neural networks in a cascade regression framework. Multimedia Tools and Applications 77(2):2261–2283. https://doi.org/10.1007/s11042-016-4261-x

    Article  Google Scholar 

  33. Segundo MP, Silva L, Bellon ORP (2012) Improving 3d face reconstruction from a single image using half-frontal face poses. In: Image Processing (ICIP), 2012 19th IEEE International Conference on (pp. 1797-1800). IEEE. 10.1109/ICIP.2012.6467230

  34. Suwajanakorn S, Kemelmacher-Shlizerman I, Seitz SM (2014) Total moving face reconstruction. In: European Conference on Computer Vision (pp. 796-812). Springer, Cham. 10.1007/978-3-319- 10593-2 52

  35. TIBCO Software Inc (2017) Statistica (data analysis software system), version 13. http://statistica.io. Accessed 23 February 2017

  36. Urbanová P (2016) Performance of distance-based matching algorithms in 3D facial identification. Egypt J Forensic Sci 6(2):135–151. https://doi.org/10.1016/j.ejfs.2016.04.004

    Article  Google Scholar 

  37. Urbanova P, Chalas I (2016) Performance of matching algorithms in non-standard expression-variant faces. In: Proceedings of the American academy of forensic sciences 68th annual scientific meeting, Las Vegas (Vol. 27, p. 445)

  38. Urbanová P, Ferková Z, Jandová M, Jurda M, Černý D, Sochor J (2018) Introducing the FIDENTIS 3D Face Database. Anthropol Rev 81(2):202–223

    Article  Google Scholar 

  39. Valstar M, Martinez B, Binefa X, Pantic M (2010) Facial point detection using boosted regression and graph models. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (pp. 2729-2736). IEEE. 10.1109/CVPR.2010.5539996

  40. Wang C, Yan S, Li H, Zhang H, Li M (2004) Automatic, effective, and efficient 3D face reconstruction from arbitrary view image. In: Pacific-Rim Conference on Multimedia(pp. 553-560). Springer, Berlin, Heidelberg. 10.1007/978-3- 540-30542-2 68

  41. Xie K, Liu B, Ruan N, Chen J (2014) The reconstruction of 3D human face based on the post-plastic surgery. In: Bio-Inspired Computing-Theories and Applications (pp. 489-493). Springer, Berlin. 10.1007/978-3-662-45049-9_80

    Google Scholar 

  42. Zeng D, Zhao Q, Long S, Li J (2017) Examplar coherent 3D face reconstruction from forensic mugshot database. Image Vis Comput 58:193–203. https://doi.org/10.1016/j.imavis.2016.03.001

    Article  Google Scholar 

  43. Zhang R, Tsai PS, Cryer JE, Shah M (1999) Shape-from-shading: a survey. IEEE Trans Pattern Anal Mach Intell 21(8):690–706. https://doi.org/10.1109/34.784284

    Article  MATH  Google Scholar 

  44. Zhu X, Lei Z, Liu X, Shi H, Li SZ (2016) Face alignment across large poses: A 3d solution. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 146-155)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Ferková.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferková, Z., Urbanová, P., Černý, D. et al. Age and gender-based human face reconstruction from single frontal image. Multimed Tools Appl 79, 3217–3242 (2020). https://doi.org/10.1007/s11042-018-6869-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6869-5

Keywords

Navigation