Skip to main content
Log in

Cryptographic and parallel hash function based on cross coupled map lattices suitable for multimedia communication security

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Cryptographic hash functions can map data of arbitrary size to data of fixed size (hash values), which can be used in a wide range of multimedia applications for communication security, such as integrity protection, message authentication and digital signature. In this paper, we present a cryptographic and parallel chaotic hash function based on the cross coupled map lattices for multimedia communication security. More specifically, we first utilize the piecewise linear chaotic map with secret keys to generate initial parameter sequence for the cross coupled map lattices and an initial hash value. Then, we extend the original message into a message matrix to enhance the correlation of message characters. Next, we process each of the message blocks in the matrix in parallel as the space domain input of the cross coupled map lattices and the initial parameters as the time domain input to generate intermediate hash values. After all message blocks are processed in parallel, the final h-bit hash value is obtained by logical operations with the initial and intermediate hash values. Finally, we evaluate the performance of the proposed hash function in terms of uniform distribution of hash values, sensitivity of the hash value to subtle changes of the original message, secret keys, and images, confusion and diffusion properties, collision tests, efficiency of computation speed. The cryptanalytic results demonstrate that the proposed hash algorithm has statistical properties with \(\bar {B} = 64.0022\) and P = 50.0017%, collision resistance with d = 85.3944, average computation speed of 132.0 Mbps, and better statistical performance compared with existing chaotic hash functions, which are suitable for multimedia communication security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmad M, Khurana S, Singh S, AlSharari HD (2017) A simple secure hash function scheme using multiple chaotic maps. 3D research 8(2), article 13

  2. Akhavan A, Samsudin A, Akhshani A (2009) Hash function based on piecewise nonlinear chaotic map. Chaos, Soliton and Fractals 42:1046–1053

    Article  MATH  Google Scholar 

  3. Akhavan A, Samsudin A, Akhshani A (2013) A novel parallel hash function based on 3D chaotic map. EURASIP Journal on Advances in Signal Processing 1:1–12

    MATH  Google Scholar 

  4. Amin M, Faragallah OS, El-Latif AAA (2009) Chaos based hash function (CBHF) for cryptographic applications. Chaos, Soliton and Fractals 42(2):767–772

    Article  Google Scholar 

  5. Bakhtiari S, Safavi-Naini R, Pieprzyk J (1996) Keyed hash function. Proceedings of the Cryptography: Policy and Algorithms, Lecture Notes in Computer Science 1029:201–214

    MathSciNet  MATH  Google Scholar 

  6. Deng S, Xiao D, Li Y, Peng W (2009) A novel combined cryptographic and hash algorithm based on chaotic control character. Commun Nonlinear Sci Numer Simul 14(11):3889–3900

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng S, Li Y, Xiao D (2010) Analysis and improvement of a chaos-based hash function construction. Commun Nonlinear Sci Numer Simul 15(5):1338–1347

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng S, Zhan Y, Xiao D, Li Y (2011) Analysis and improvement of a hash-based image encryption algorithm. Commun Nonlinear Sci Numer Simul 16 (8):3269–3278

    Article  MathSciNet  MATH  Google Scholar 

  9. Elhoseny M, El-Minir HK, Riad AM, Yuan X (2016) A secure data routing schema for WSN using elliptic curve cryptography and homomorphic encryption. Journal of King Saud University - Computer and Information Sciences 28(3):262–275

    Article  Google Scholar 

  10. Elhoseny M, Yuan X, El-Minir HK, Riad AM (2016) An energy efficient encryption method for secure dynamic WSN. Security and Communication Networks 9(13):2024–2031

    Google Scholar 

  11. Elhoseny M, Farouk A, Zhou N, Wang M-M, Abdalla S, Batle J (2017) Dynamic multi-hop clustering in a wireless sensor network: performance improvement. Wirel Pers Commun 95(4):3733–3753

    Article  Google Scholar 

  12. Elhoseny M, Shehab A, Yuan X (2017) Optimizing robot path in dynamic environments using genetic algorithm and Bezier curve. J Intell Fuzzy Syst 33 (4):2305–2316

    Article  MATH  Google Scholar 

  13. Elhoseny M, Tharwat A, Farouk A, Hassanien AE (2017) K-coverage model based on genetic algorithm to extend WSN lifetime. IEEE Sensors Letters 1(4):1–4

    Article  Google Scholar 

  14. Elhoseny M, Tharwat A, Hassanien AE (2018) Bezier curve based path planning in a dynamic field using modified genetic algorithm. Journal of Computational Science 25:339–350

    Article  Google Scholar 

  15. Elhoseny M, Tharwat A, Yuan X, Hassanien A (2018) Optimizing K-coverage of mobile WSNs. Expert Syst Appl 92:142–153

    Article  Google Scholar 

  16. Elsayed W, Elhoseny M, Sabbeh S, Riad A (2018) Self-maintenance model for wireless sensor networks. Comput Electr Eng 70:799–812

    Article  Google Scholar 

  17. FarouK A, Batle J, Elhoseny M, Naseri M, Lone M, Fedorov A, Alkhambashi A, Ahmedand SH, Abdel-Aty M (2018) Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states. Front Phys 13(2):130306

    Article  Google Scholar 

  18. Guo XF, Zhang JS (2006) Keyed one-way hash function construction based on the chaotic dynamic S-Box. Acta Phys Sin 55:4442–4449

    Google Scholar 

  19. Guo W, Wang X, He D, Cao Y (2009) Cryptanalysis on a parallel keyed hash function based on chaotic maps. Phys Lett A 373(36):3201–3206

    Article  MathSciNet  MATH  Google Scholar 

  20. Hong D, Kim D-C, Kwon D, Kim J (2016) Improved preimage attacks on hash modes of 8-round AES-256. Multimed Tools Appl 75(22):14525–14539

    Article  Google Scholar 

  21. Jiteurtragool N, Ketthong P, Wannaboon C, San-Um W (2013) A topologically simple keyed hash function based on circular chaotic sinusoidal map network. In: International conference on advanced communication technology, pp 1089–1094

  22. Kanso A, Ghebleh M (2013) A fast and efficient chaos-based keyed hash function. Commun Nonlinear Sci Numer Simul 18:109–123

    Article  MathSciNet  MATH  Google Scholar 

  23. Kanso A, Ghebleh M (2015) A structure-based chaotic hashing scheme. Nonlinear Dyn 81(1):27–40

    Article  MathSciNet  Google Scholar 

  24. Kim B-K, Oh S-J, Jang S-B, Ko Y-W (2017) File similarity evaluation scheme for multimedia data using partial hash information. Multimed Tools Appl 76(19):19649–19663

    Article  Google Scholar 

  25. Kim H, Kim D-W, Yi O, Kim J (2018) Cryptanalysis of hash functions based on blockciphers suitable for IoT servicle platform security. Mutimedia Tools and Applications. https://doi.org/10.1007/s11042-018-5630-4

  26. Kwok HS, Tang WKS (2005) A chaos-based cryptographic hash function for message authentication. Int J Bifurcation Chaos 15(12):4043–4050

    Article  MATH  Google Scholar 

  27. Li Y (2016) Collision analysis and improvement of a hash function based on chaotic tent map. Optik 127(10):4484–4489

    Article  Google Scholar 

  28. Li Y, Li X (2016) Chaotic hash function based on circular shifts with variable parameters. Chaos, Soliton and Fractals 91:639–648

    Article  MathSciNet  MATH  Google Scholar 

  29. Li Y, Deng S, Xiao D (2011) A novel Hash algorithm construction based on chaotic neural network. Neural Comput & Applic 20(1):133–141

    Article  Google Scholar 

  30. Li Y, Xiao D, Deng S, Han Q, Zhou G (2011) Parallel hash function construction based on chaotic maps with changeable parameters. Neural Comput & Applic 20(8):1305–1312

    Article  Google Scholar 

  31. Li Y, Xiao D, Deng S (2012) Keyed hash function based on a dynamic lookup table of functions. Inform Sci 214:56–75

    Article  Google Scholar 

  32. Li Y, Xiao D, Deng S (2012) Secure hash function based on chaotic tent map with changeable parameter. High Technol Lett 18(1):7–12

    Google Scholar 

  33. Li Y, Ge G, Xia D (2016) Chaotic hash function based on the dynamic S-Box with variable parameters. Nonlinear Dyn 84(4):2387–2402

    Article  MATH  Google Scholar 

  34. Liang J, Lai X (2005) Improved collision attack on hash function MD5, Technical report

  35. Lin Z, Yu S, Lu J (2017) A novel approach for constructing one-way hash function based on a message block controlled 8D hyperchaotic map. Int J Bifurcation Chaos 27(7):1750106

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin Z, Guyeux C, Yu S, Wang Q, Cai S (2017) On the use of chaotic iterations to design keyed hash function. Clust Comput. https://doi.org/10.1007/s10586-017-1062-6

  37. Liu J, Wang X, Yang K, Zhao C (2012) A fast new cryptographic hash function based on integer tent mapping system. J Comput 7(7):1671–1680

    Google Scholar 

  38. Liu H, Kadir A, Sun X, Li Y (2018) Chaos based adaptive double-image encryption scheme using hash function and S-boxes. Multimed Tools Appl 77:1391–1407

    Article  Google Scholar 

  39. Luo Y, Du M (2012) One-way hash function construction based on the spatiotemporal chaotic system. Chinese Physics B 21(6):060503

    Article  Google Scholar 

  40. Mendel F, Nad T, Schlaffer M (2013) Improving local collisions: new attacks on reduced SHA-256. Advances in Cryptology-EUROCRYPT, lecture notes in computer science 7881:262–278

    Article  MATH  Google Scholar 

  41. Mihcak K, Venkatesan R, Liu T (2005) Watermarking via optimization algorithms for quantizing randomized semi-global image statistics. Multimedia Systems 11(2):185—200

    Article  Google Scholar 

  42. NIST (2001) Secure hash standard. http://csrc.nist.gov/CryptoToolkit/tkhash.html

  43. Nouri M, Khezeli A, Ramezani A, Ebrahimi A (2012) A dynamic chaotic hash function based upon circle chord methods. In: 6th international symposium on telecommunications, pp 1044–1049

  44. Ren H, Wang Y, Xie Q, Yang H (2009) A novel method for one-way hash function construction based on spatiotemporal chaos. Chaos, Soliton and Fractals 42 (4):2014–022

    Article  Google Scholar 

  45. Rivest R (1992) The MD5 message-digest algorithm. IETF network working group

  46. Rompel J (1990) One-way functions are necessary and sufficient for secure signatures. Proceedings of the 22th annual ACM symposium on theory of computing: 387–394

  47. Schneider M, Chang SF (1996) A robust content based digital signature for image authentication. In: Proceedings IEEE conf image processing, vol 3, pp 227–230

  48. Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech J 28(4):656–715

    Article  MathSciNet  MATH  Google Scholar 

  49. Stevens M (2013) New collision attacks on SHA-1 based on optimal joint local-collision analysis. Advances in Cryptology-EUROCRYPT 2013, Lecture Notes in Computer Science 7881:245–261

    Article  MATH  Google Scholar 

  50. Tang KW, Tang WK, Man KF (2007) A chaos-based pseudo-random number generator and its application in voice communications. Int J Bifurcation Chaos 17 (3):923–933

    Article  MATH  Google Scholar 

  51. Teh JS, Samsudin A, Akhavan A (2015) Parallel chaotic hash function based on the shuffle-exchange network. Nonlinear Dyn 81(3):1067–1079

    Article  Google Scholar 

  52. Tharwat A, Elhoseny M, Hassanien A, Gabel T, Kumar A (2018) Intelligent Beziér curve-based path planning model using chaotic particle swarm optimization algorithm. Clust Comput. https://doi.org/10.1007/s10586-018-2360-3

  53. Todorova M, Stoyanov B, Szczypiorski K, Kordov K (2018) SHAH: hash function based on irregularly decimated chaotic map. arXiv:1808.01956

  54. Tsudik G (1992) Message authentication with one-way hash functions. ACM SIGCOMM Computer Communication Review 22:29–38

    Article  Google Scholar 

  55. Wang S, Shan P (2011) Security analysis of a one-way hash function based on spatiotemporal chaos. Chin Phys B 20(9):090504–090507

    Article  Google Scholar 

  56. Wang X, Feng D, Lai X, Yu H (2004) Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint archive, report 2004/199

  57. Wang X, Yin Y, Yu H (2005) Finding collisions in the full SHA-1. Advances in Cryptology-CRYPTO 2005, Lecture Notes in Computer Science 3621:17–6

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang Y, Yang D, Du M, Yang H (2007) One-way hash function construction based on iterating a chaotic map. In: 2007 international conference on computational intelligence and security workshops, pp 791–794

  59. Wang Y, Liao X, Xiao D, Wong K (2008) One-way hash function construction based on 2D coupled map lattices. Inform Sci 178(5):1391–1406

    Article  MATH  Google Scholar 

  60. Wang Y, Wong KW, Xiao D (2011) Parallel hash function construction based on coupled map lattices. Commun Nonlinear Sci Numer Simul 16:2810–2821

    Article  MathSciNet  MATH  Google Scholar 

  61. Wang S, Li D, Zhou H (2012) Collision analysis of a chaos-based hash function with both modification detection and localization capability. Commun Nonlinear Sci Numer Simul 17(2):780–784

    Article  MathSciNet  Google Scholar 

  62. Wang Q, Yu S, Li C, Lu J, Fang X, Guyeux C, Bahi JM (2016) Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans Circuits Syst Regul Pap 63(3):401–412

    Article  MathSciNet  Google Scholar 

  63. Wong KW (2003) A combined chaotic cryptographic and hashing scheme. Phys Lett A 307:292–298

    Article  MathSciNet  MATH  Google Scholar 

  64. Xiao D, Liao X, Deng S (2008) Parallel keyed hash function construction based on chaotic maps. Phys Lett A 372:4682–4688

    Article  MathSciNet  MATH  Google Scholar 

  65. Xiao D, Liao X, Wang Y (2009) Improving the security of a parallel keyed hash function based on chaotic maps. Phys Lett A 373:4346–4353

    Article  MathSciNet  MATH  Google Scholar 

  66. Xiao D, Liao X, Wang Y (2009) Parallel keyed hash function construction based on chaotic neural network. Neurocomputing 72:2288–2296

    Article  Google Scholar 

  67. Xiao D, Peng W, Liao X, Xiang T (2010) Collision analysis of one kind of chaos-based hash function. Phys Lett A 374(10):1228–1231

    Article  MATH  Google Scholar 

  68. Xiao D, Shih FY, Liao XF (2010) A chaos-based hash function with both modification detection and localization capabilities. Commun Nonlinear Sci Numer Simul 15:2254–2261

    Article  MathSciNet  MATH  Google Scholar 

  69. Xie EY, Li C, Yu S, Lu J (2017) On the cryptanalysis of Fridrich’s chaotic image encryption scheme. Signal Process 132:150–154

    Article  Google Scholar 

  70. Yi X (2005) Hash function based on chaotic tent maps. IEEE Trans Circuits Syst Express Briefs 52:354–357

    Article  Google Scholar 

  71. Yuan X, Elhoseny M, El-Minir HK, Riad AM (2017) A genetic algorithm-based, dynamic clustering method towards improved WSN longevity. J Netw Syst Manag 25(1):21–46

    Article  Google Scholar 

  72. Zhang H, Wang X, Li Z, Liu D (2005) One way hash function construction based on spatiotemporal chaos. Acta Phys Sin 54:4006–4011

    Google Scholar 

  73. Zhang J, Wang X, Zhang W (2010) Chaotic keyed hash function based on feedforward-eedback nonlinear digital filter. Phys Lett A 362:439–448

    Article  MATH  Google Scholar 

  74. Zhang P, Zhang X, Yu J (2017) A parallel hash function with variable initial values. Wirel Pers Commun 96(2):2289–2303

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Grant nos. 61672119, 61528206 and 61402380), the Natural Science Foundation of CQ CSTC (Grant nos. cstc2015jcyjA40044, and cstc2014jcyjA40030), the Fundamental Research Funds for the Central Universities (Grant no. XDJK2015B030), U.S. National Science Foundation (Grant nos. CNS-1253506 (CAREER) and CNS-1618300), and the Opening Project of State Key Laboratory for Novel Software Technology (Grant No. KFKT2016B13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yantao Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ge, G. Cryptographic and parallel hash function based on cross coupled map lattices suitable for multimedia communication security. Multimed Tools Appl 78, 17973–17994 (2019). https://doi.org/10.1007/s11042-018-7122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-7122-y

Keywords

Navigation