Skip to main content

Advertisement

Log in

Feature selection for facial emotion recognition using late hill-climbing based memetic algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Facial Emotion Recognition (FER) is an important research domain which allows us to provide a better interactive environment between humans and computers. Some standard and popular features extracted from facial expression images include Uniform Local Binary Pattern (uLBP), Horizontal-Vertical Neighborhood Local Binary Pattern (hvnLBP), Gabor filters, Histogram of Oriented Gradients (HOG) and Pyramidal HOG (PHOG). However, these feature vectors may contain some features that are irrelevant or redundant in nature, thereby increasing the overall computational time as well as recognition error of a classification system. To counter this problem, we have proposed a new feature selection (FS) algorithm based on Late Hill Climbing and Memetic Algorithm (MA). A novel local search technique called Late Acceptance Hill Climbing through Redundancy and Relevancy (LAHCRR) has been used in this regard. It combines the concepts of Local Hill-Climbing and minimal-Redundancy Maximal-Relevance (mRMR) to form a more effective local search mechanism in MA. The algorithm is then evaluated on the said feature vectors extracted from the facial images of two popular FER datasets, namely RaFD and JAFFE. LAHCRR is used as local search in MA to form Late Hill Climbing based Memetic Algorithm (LHCMA). LHCMA is compared with state-of-the-art methods. The experimental outcomes show that the proposed FS algorithm reduces the feature dimension to a significant amount as well as increases the recognition accuracy as compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agada R, Yan J (2015) Edge based mean LBP for valence facial expression detection. Proc 2015 IEEE Int Conf Electr Comput Commun Technol ICECCT 2015. https://doi.org/10.1109/ICECCT.2015.7226014

  2. Ahmed F, Hossain E (2013) Automated Facial Expression Recognition Using Gradient-Based Ternary Texture Patterns. Faisal Chinese J Eng 2013:8

    Google Scholar 

  3. Appleby JS, Blake DV, Newman EA (1961) Techniques for producing school timetables on a computer and their application to other scheduling problems. Comput J 3:237–245

    Article  MathSciNet  MATH  Google Scholar 

  4. Barman A, Dutta P (2019) Facial expression recognition using distance and texture signature relevant features. Appl Soft Comput

  5. Belanche LA, González FF (2011) Review and Evaluation of Feature Selection Algorithms in Synthetic Problems

  6. Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM international conference on Image and video retrieval. ACM, pp 401–408

  7. Burke EK, Bykov Y (2017) The late acceptance Hill-Climbing heuristic. Eur J Oper Res 258:70–78

    Article  MathSciNet  MATH  Google Scholar 

  8. Carcagnì P, Del Coco M, Leo M, Distante C (2015) Facial expression recognition and histograms of oriented gradients: a comprehensive study. Springerplus 4. https://doi.org/10.1186/s40064-015-1427-3

  9. Dalai N, Triggs B, Rhone-Alps I, Montbonnot F (2005) Histograms of oriented gradients for human detection. IEEE Comput Soc Conf Comput Vis Pattern Recognition, 2005 CVPR 2005 1:886–893. https://doi.org/10.1109/CVPR.2005.177

  10. Daugman JG (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am A 2:1160. https://doi.org/10.1364/JOSAA.2.001160

    Article  Google Scholar 

  11. Dhall A, Asthana A, Goecke R, Gedeon T (2011) Emotion recognition using PHOG and LPQ features. 2011 IEEE Int Conf Autom Face Gesture Recognit Work FG 2011 878–883. https://doi.org/10.1109/FG.2011.5771366

  12. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinforma Comput Biol 3:185–205

    Article  Google Scholar 

  13. Dyer CR (2003) Simultaneous feature selection and classifier training via linear programming: a case study for face expression recognition. 2003 IEEE Comput Soc Conf Comput Vis Pattern Recognition, 2003 Proceedings 1:I-346-I-352. https://doi.org/10.1109/CVPR.2003.1211374

  14. Ekman P, Rosenberg EL (1997) What the face reveals: Basic and applied studies of spontaneous expression using the Facial Action Coding System (FACS)

  15. Gharsalli S, Emile B, Laurent H, Desquesnes X (2016) Feature Selection for Emotion Recognition based on Random Forest. pp 511–517

  16. Ghimatgar H, Kazemi K, Helfroush MS, Aarabi A (2018) An improved feature selection algorithm based on graph clustering and ant colony optimization. Knowledge-Based Syst 159:270–285

    Article  Google Scholar 

  17. Ghimire D, Jeong S, Lee J, Park SH (2016) Facial expression recognition based on local region specific features and support vector machines. Multimed Tools Appl:1–19. https://doi.org/10.1007/s11042-016-3418-y

  18. Ghosh M, Adhikary S, Ghosh KK et al (2019) Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods. Med Biol Eng Comput 57:159–176. https://doi.org/10.1007/s11517-018-1874-4

    Article  Google Scholar 

  19. Ghosh M, Begum S, Sarkar R et al (2019) Recursive Memetic Algorithm for gene selection in microarray data. Expert Syst Appl 116:172–185. https://doi.org/10.1016/j.eswa.2018.06.057

    Article  Google Scholar 

  20. Ghosh M, Malakar S, Bhowmik S, et al (2019) Feature Selection for Handwritten Word Recognition Using Memetic Algorithm. In: Advances in Intelligent Computing. Springer, pp 103–124

  21. Haghighat M, Zonouz S, Abdel-Mottaleb M (2015) CloudID: Trustworthy cloud-based and cross-enterprise biometric identification. Expert Syst Appl 42:7905–7916. https://doi.org/10.1016/j.eswa.2015.06.025

    Article  Google Scholar 

  22. Hamamoto Y, Uchimura S, Watanabe M et al (1998) A Gabor filter-based method for recognizing handwritten numerals. Pattern Recogn 31:395–400. https://doi.org/10.1016/S0031-3203(97)00057-5

    Article  Google Scholar 

  23. Happy SL, George A, Routray A (2012) A real time facial expression classification system using Local Binary Patterns. Intell Hum Comput Interact (IHCI), 2012 4th Int Conf 1–5. https://doi.org/10.1109/IHCI.2012.6481802

  24. Hsu H-H, Hsieh C-W, Lu M-D (2011) Hybrid feature selection by combining filters and wrappers. Expert Syst Appl 38:8144–8150

    Article  Google Scholar 

  25. Huang J, Cai Y, Xu X (2007) A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recogn Lett 28:1825–1844

    Article  Google Scholar 

  26. Huang D, Shan C, Ardabilian M et al (2011) Facial image analysis based on local binary patterns : A survey. IEEE Trans Syst Man, Cybern Part C (Applications Rev) 41:765–781

    Article  Google Scholar 

  27. Jain AK, Farrokhnia F (1991) Unsupervised texture segmentation using Gabor filters. Pattern Recogn 24:1167–1186. https://doi.org/10.1016/0031-3203(91)90143-S

    Article  Google Scholar 

  28. Kamarainen JK, Kyrki V, Kälviäinen H (2006) Invariance properties of Gabor filter-based features - Overview and applications. IEEE Trans Image Process 15:1088–1099

    Article  Google Scholar 

  29. Kashef S, Nezamabadi-pour H (2015) An advanced ACO algorithm for feature subset selection. Neurocomputing 147:271–279. https://doi.org/10.1016/j.neucom.2014.06.067

    Article  Google Scholar 

  30. Kong WK, Zhang D, Li W (2003) Palmprint feature extraction using 2-D Gabor filters. Pattern Recogn 36:2339–2347. https://doi.org/10.1016/S0031-3203(03)00121-3

    Article  Google Scholar 

  31. Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. In: European conference on machine learning. Springer, pp 171–182

  32. Lajevardi S, Hussain Z (2009) Feature selection for facial expression recognition based on optimization algorithm. Nonlinear Dyn:182–185

  33. Lajevardi SM, Hussain ZM (2012) Automatic facial expression recognition: Feature extraction and selection. Signal, Image Video Process 6:159–169. https://doi.org/10.1007/s11760-010-0177-5

    Article  Google Scholar 

  34. Langner O, Dotsch R, Bijlstra G et al (2010) Presentation and validation of the radboud faces database. Cognit Emot 24:1377–1388. https://doi.org/10.1080/02699930903485076

    Article  Google Scholar 

  35. Li Z, Imai J, Kaneko M (2009) Facial-component-based bag of words and phog descriptor for facial expression recognition. In: 2009 IEEE International Conference on Systems, Man and Cybernetics. IEEE, pp 1353–1358

  36. Li P, Phung SL, Bouzerdom A, Tivive FHC (2010) Feature selection for facial expression recognition. 2010 2nd Eur Work Vis Inf Process 35–40. https://doi.org/10.1109/EUVIP.2010.5699141

  37. Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11:467–476. https://doi.org/10.1109/TIP.2002.999679

    Article  Google Scholar 

  38. Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998) Coding facial expressions with Gabor wavelets. In: Proceedings - 3rd IEEE International Conference on Automatic Face and Gesture Recognition, FG 1998. pp 200–205

  39. Mafarja M, Mirjalili S (2018) Whale optimization approaches for wrapper feature selection. Appl Soft Comput 62:441–453

    Article  Google Scholar 

  40. Makhmudkhujaev F, Abdullah-Al-Wadud M, Bin IMT et al (2019) Facial expression recognition with local prominent directional pattern. Signal Process Image Commun

  41. Malakar S, Ghosh M, Bhowmik S et al (2019) A GA based hierarchical feature selection approach for handwritten word recognition. Neural Comput & Applic:1–20. https://doi.org/10.1007/s00521-018-3937-8

  42. Meshgini S, Aghagolzadeh A, Seyedarabi H (2013) Face recognition using Gabor-based direct linear discriminant analysis and support vector machine. Comput Electr Eng 39:727–745. https://doi.org/10.1016/j.compeleceng.2012.12.011

    Article  Google Scholar 

  43. Mistry K, Zhang L, Neoh SC et al (2017) A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition. IEEE Trans Cybern 47:1496–1509

    Article  Google Scholar 

  44. Mohamed NS, Zainudin S, Othman ZA (2017) Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data. Expert Syst Appl 90:224–231

    Article  Google Scholar 

  45. Nava R, Cristóbal G, Escalante-Ramírez B (2011) Invariant texture analysis through Local Binary Patterns. Comput Vis pattern Recognit

  46. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  47. Ou J, Bai X-B, Pei Y et al (2010) Automatic Facial Expression Recognition Using Gabor Filter and Expression Analysis. Second Int Conf Comput Model Simul 2010:215–218. https://doi.org/10.1109/ICCMS.2010.45

    Google Scholar 

  48. Pantic M, Rothkrantz LJM (2000) Automatic analysis of facial expressions: the state of the art. IEEE Trans Pattern Anal Mach Intell 22:1424–1445. https://doi.org/10.1109/34.895976

    Article  Google Scholar 

  49. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238

    Article  Google Scholar 

  50. Priya RV (2019) Emotion recognition from geometric fuzzy membership functions. Multimed Tools Appl:1–32

  51. Radovic M, Ghalwash M, Filipovic N, Obradovic Z (2017) Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics 18:1–14. https://doi.org/10.1186/s12859-016-1423-9

    Article  Google Scholar 

  52. Sakar CO, Kursun O, Gurgen F (2012) A feature selection method based on kernel canonical correlation analysis and the minimum Redundancy–Maximum Relevance filter method. Expert Syst Appl 39:3432–3437

    Article  Google Scholar 

  53. Senawi A, Wei H-L, Billings SA (2017) A new maximum relevance-minimum multicollinearity (MRmMC) method for feature selection and ranking. Pattern Recogn 67:47–61

    Article  Google Scholar 

  54. Shan C, Gong S, McOwan PW (2009) Facial expression recognition based on Local Binary Patterns: A comprehensive study. Image Vis Comput 27:803–816. https://doi.org/10.1016/j.imavis.2008.08.005

    Article  Google Scholar 

  55. Shan C, Gritti T (2008) Learning Discriminative LBP-Histogram Bins for Facial Expression Recognition. Procedings Br Mach Vis Conf 2008:27.1–27.10. https://doi.org/10.5244/C.22.27

    Google Scholar 

  56. Shen L, Bai L, Fairhurst M (2007) Gabor wavelets and General Discriminant Analysis for face identification and verification. Image Vis Comput 25:553–563. https://doi.org/10.1016/j.imavis.2006.05.002

    Article  Google Scholar 

  57. Sreedharan NPN, Ganesan B, Raveendran R et al (2018) Grey Wolf optimisation-based feature selection and classification for facial emotion recognition. IET Biometrics 7:490–499

    Article  Google Scholar 

  58. Viola P, Jones MMJ (2004) Robust Real-Time Face Detection. Int J Comput Vis 57:137–154. https://doi.org/10.1023/B:VISI.0000013087.49260.fb

    Article  Google Scholar 

  59. Wang X, Jin C, Liu W, et al (2013) Feature Fusion of HOG and WLD for Facial Expression Recognition. Syst Integr (SII), 2013 IEEE/SICE Int Symp 227–232. https://doi.org/10.1109/SII.2013.6776664

  60. Wang F, Lv J, Ying G et al (2019) Facial expression recognition from image based on hybrid features understanding. J Vis Commun Image Represent 59:84–88

    Article  Google Scholar 

  61. Wang S-H, Phillips P, Dong Z-C, Zhang Y-D (2018) Intelligent facial emotion recognition based on stationary wavelet entropy and Jaya algorithm. Neurocomputing 272:668–676

    Article  Google Scholar 

  62. Wang G, Yang Y, Kong H (2009) Self-Learning facial emotional feature selection based on rough set theory. Math Probl Eng 2009. https://doi.org/10.1155/2009/802932

  63. Wang Z, Zhang Y, Chen Z, et al (2016) Application of ReliefF algorithm to selecting feature sets for classification of high resolution remote sensing image. In: Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International. IEEE, pp 755–758

  64. Wei J, Zhang R, Yu Z et al (2017) A BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selection. Appl Soft Comput J 58:176–192. https://doi.org/10.1016/j.asoc.2017.04.061

    Article  Google Scholar 

  65. Yu J, Bhanu B (2006) Evolutionary feature synthesis for facial expression recognition. Pattern Recogn Lett 27:1289–1298. https://doi.org/10.1016/j.patrec.2005.07.026

    Article  Google Scholar 

  66. Zhang S, Zhao X, Lei B (2012) Facial expression recognition based on local binary patterns and local fisher discriminant analysis. WSEAS Trans Signal Process 8:21–31

    Google Scholar 

  67. Zhao L, Wang Z, Zhang G (2017) Facial Expression Recognition from Video Sequences Based on Spatial-Temporal Motion Local Binary Pattern and Gabor Multiorientation Fusion Histogram. Math Probl Eng 2017. https://doi.org/10.1155/2017/7206041

  68. Zhu Z, Ong Y-S, Dash M (2007) Wrapper–filter feature selection algorithm using a memetic framework. IEEE Trans Syst Man, Cybern Part B 37:70–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manosij Ghosh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Code

https://github.com/ManosijGhosh/Late-Hill-Climbing-based-Memetic-Algorithm-LHCMA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M., Kundu, T., Ghosh, D. et al. Feature selection for facial emotion recognition using late hill-climbing based memetic algorithm. Multimed Tools Appl 78, 25753–25779 (2019). https://doi.org/10.1007/s11042-019-07811-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07811-x

Keywords

Navigation