Skip to main content
Log in

Adaptive enhancement of underwater images using multi-objective PSO

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Underwater images have poor clarity and bad contrast due to low illumination in deep water. Moreover, underwater images are bluish-green in appearance due to inherent wavelength absorption property of water. Therefore, the study of underwater images is a difficult task. Being computationally simple, histogram-based enhancement techniques are obvious choice for improvement of contrast and color of underwater images. However, due to lack of any guidance mechanism, these techniques can overstretch the histogram leading to artifacts in the image. Hence, an adaptive method named ‘Contrast and Information Enhancement of Underwater Images’ (CIEUI) is proposed, which enhances underwater images by improving their contrast and information content using Multi-Objective Particle Swarm Optimization (MOPSO). Objective functions of MOPSO are chosen to act as guiding mechanism to ensure color & contrast correction and information enhancement respectively without introducing artifacts. Computed results not only have good contrast and color performance but also have better information content. The proposed CIEUI technique performs quantitatively and qualitatively better as compared to state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdul Ghani AS, Mat Isa NA (2017) Automatic System for Improving Underwater Image Contrast and Color Through Recursive Adaptive Histogram Modification. Comput Electron Agric 141(C):181–195. https://doi.org/10.1016/j.compag.2017.07.021

    Article  Google Scholar 

  2. AbuNaser A, Doush IA, Mansour N, Alshattnawi S (2015) Underwater Image Enhancement Using Particle Swarm Optimization. J Intell Syst 24(1):99–115

    Google Scholar 

  3. Alvarez-Benitez JE, Everson RM, Fieldsend JE (2005) A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts. In: Coello Coello CA, Hernández Aguirre A, Zitzler E (eds) Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 459–473

    Chapter  Google Scholar 

  4. Ancuti CO, Ancuti C, De Vleeschouwer C, Bekaert P (2018) Color Balance and Fusion for Underwater Image Enhancement. IEEE Trans Image Process 27(1):379–393. https://doi.org/10.1109/TIP.2017.2759252

    Article  MathSciNet  MATH  Google Scholar 

  5. Berkenkamp, L. (2009). Discover the Oceans: The World’s Largest Ecosystem. Nomad Press

  6. Buchsbaum G (1980) A spatial processor model for object colour perception. Journal of the Franklin Institute 310(1):1–26. https://doi.org/10.1016/0016-0032(80)90058-7

    Article  Google Scholar 

  7. Carlevaris-Bianco N, Mohan A, Eustice RM (2010) Initial results in underwater single image dehazing. MTS/IEEE Seattle, OCEANS 2010. doi:10.1109/OCEANS.2010.5664428

  8. Chambah M, Semani D, Renouf A, Courtellemont P, Rizzi A (2003) Underwater color constancy: enhancement of automatic live fish recognition. In Electronic Imaging 2004 (pp. 157–168).

  9. Chao L, Wang M (2010) Removal of water scattering. ICCET 2010–2010 International Conference on Computer Engineering and Technology, Proceedings, 2, 35–39. doi:10.1109/ICCET.2010.5485339

  10. Chiang JY, Chen YC (2012) Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans Image Process 21(4):1756–1769. https://doi.org/10.1109/TIP.2011.2179666

    Article  MathSciNet  MATH  Google Scholar 

  11. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  12. Duarte A, Codevilla F, Gaya JDO, Botelho SSC (2016) A dataset to evaluate underwater image restoration methods. In OCEANS 2016 - Shanghai (pp. 1–6). doi:10.1109/OCEANSAP.2016.7485524

  13. Galdran A, Pardo D, Picón A, Alvarez-Gila A (2015) Automatic Red-Channel underwater image restoration. J Vis Commun Image Represent 26:132–145. https://doi.org/10.1016/j.jvcir.2014.11.006

    Article  Google Scholar 

  14. Gao Y, Li H, Wen S (2016) Restoration and enhancement of underwater images based on bright channel prior. Mathematical Problems in Engineering, 2016.

  15. Garcia R, Nicosevici T, Cufí X (2002) On the way to solve lighting problems in underwater imaging. In OCEANS'02 MTS/IEEE. IEEE 2:1018–1024

  16. Garg D, Garg NK, Kumar M (2018) Underwater image enhancement using blending of CLAHE and percentile methodologies. Multimed Tools Appl 77(20):26545–26561. https://doi.org/10.1007/s11042-018-5878-8

    Article  Google Scholar 

  17. Ghani ASA, Isa NAM (2015) Underwater image quality enhancement through integrated color model with Rayleigh distribution. Appl Soft Comput 27:219–230

    Article  Google Scholar 

  18. Hanmandlu M, Verma OP, Kumar NK, Kulkarni M (2009) A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Trans Instrum Meas 58(8):2867–2879

    Article  Google Scholar 

  19. He K, Sun J, Tang X (2009) Single image haze removal using dark channel prior. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1956–1963). doi:10.1109/CVPR.2009.5206515

  20. Henke B, Vahl M, Zhou Z (2013) Removing color cast of underwater images through non-constant color constancy hypothesis. In 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (pp. 20–24)

  21. Hitam MS, Awalludin EA, Yussof WNJHW, Bachok Z (2013) Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In Computer Applications Technology (ICCAT), 2013 International Conference on (pp. 1–5)

  22. Hope N (n.d.) Underwater Videos and Pictures

  23. Hung H-C, Chen C-L (2012) A fuzzy inference model for removing the color cast of digitally captured images under unknown illuminants. In 2012 International conference on Fuzzy Theory and Its Applications (iFUZZY2012) (pp. 192–197)

  24. Iqbal K, Odetayo M, James A, Salam RA, Talib AZH (2010a) Enhancing the low quality images using unsupervised colour correction method. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 1703–1709. doi:10.1109/ICSMC.2010.5642311

  25. Iqbal K, Odetayo M, James A, Salam RA, Talib AZH (2010b) Enhancing the low quality images using Unsupervised Colour Correction Method. In Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on (pp. 1703–1709)

  26. Iqbal K, Salam RA, Osman A, Talib AZ (2007) Underwater Image Enhancement Using an Integrated Colour Model. Int J Comput Sci 34(2):239–244. https://doi.org/10.1016/S0031-3203(01)00040-1

    Article  Google Scholar 

  27. James K, Russell E (1995) Particle swarm optimization. In Proceedings of 1995 IEEE International Conference on Neural Networks (pp. 1942–1948).

  28. Jolla L (2015) Single underwater image enhancement using depth estimation based on blurriness Yan-Tsung Peng , Xiangyun Zhao and Pamela C. Cosman Department of Electrical and Computer Engineering , University of California , San Diego ,. International Conference on Image Processing (ICIP), 2–6.

  29. Kanmani M, Narasimhan V (2017) Swarm intelligent based contrast enhancement algorithm with improved visual perception for color images. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4911-7

    Article  Google Scholar 

  30. Knowles J, Corne D (1999) The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (Vol. 1, pp. 98–105).

  31. Kwok NM, Shi HY, Ha QP, Fang G, Chen SY, Jia X (2013) Simultaneous image color correction and enhancement using particle swarm optimization. Eng Appl Artif Intell 26(10):2356–2371

    Article  Google Scholar 

  32. Lam EY (2005) Combining gray world and retinex theory for automatic white balance in digital photography. In Proceedings of the Ninth International Symposium on Consumer Electronics, 2005. (ISCE 2005). (pp. 134–139). doi:10.1109/ISCE.2005.1502356

  33. Lebart K, Smith C, Trucco E, Lane DM (2003) Automatic indexing of underwater survey video: algorithm and benchmarking method. IEEE J Ocean Eng 28(4):673–686

    Article  Google Scholar 

  34. Li C, Guo J, Wang B, Cong R, Zhang Y, Wang J (2016) Single underwater image enhancement based on color cast removal and visibility restoration. Journal of Electronic Imaging 25(3):033012. https://doi.org/10.1117/1.JEI.25.3.033012

    Article  Google Scholar 

  35. Liu Y, Liang Y, Liu S, Rosenblum DS, Zheng Y (2016) Predicting urban water quality with ubiquitous data. ArXiv Preprint ArXiv:1610.09462

  36. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: Recognizing Complex Activities from Sensor Data. In IJCAI

  37. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-based activity recognition. Neurocomputing 181:108–115. https://doi.org/10.1016/j.neucom.2015.08.096

    Article  Google Scholar 

  38. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban Water Quality Prediction based on Multi-task Multi-view Learning (Proceeding). IJCAI 2016. Retrieved from https://www.microsoft.com/en-us/research/publication/urban-water-quality-prediction-based-multi-task-multi-view-learning-2/

  39. Lu H, Li Y, Zhang Y, Chen M, Serikawa S, Kim H (2017) Underwater optical image processing: a comprehensive review. Computer Vision and Pattern Recognition:1–14. https://doi.org/10.1007/s11036-017-0863-4

    Article  Google Scholar 

  40. Panetta K, Gao C, Agaian S (2016) Human-visual-system-inspired underwater image quality measures. IEEE J Ocean Eng 41(3):541–551

    Article  Google Scholar 

  41. Peng YT, Cosman PC (2017) Underwater Image Restoration Based on Image Blurriness and Light Absorption. IEEE Trans Image Process 26(4):1579–1594. https://doi.org/10.1109/TIP.2017.2663846

    Article  MathSciNet  MATH  Google Scholar 

  42. Reyes-Sierra M, Coello CAC (2006) Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  43. Rizzi A, Gatta C, Marini D (2003) A new algorithm for unsupervised global and local color correction. Pattern Recogn Lett 24(11):1663–1677

    Article  Google Scholar 

  44. Schechner YY, Averbuch Y (2007) Regularized image recovery in scattering media. IEEE Trans Pattern Anal Mach Intell 29(9):1655–1660

    Article  Google Scholar 

  45. Sethi R, Sreedevi I, Verma OP, Jain V (2015) An optimal underwater image enhancement based on fuzzy gray world algorithm and Bacterial Foraging algorithm. In 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG) (pp. 1–4)

  46. Singh H (n.d.) \uppercase{WHOI} Color Correction Dataset.

  47. Singh K, Kapoor R, Sinha SK (2015) Enhancement of low exposure images via recursive histogram equalization algorithms. Optik 126(20):2619–2625. https://doi.org/10.1016/j.ijleo.2015.06.060

    Article  Google Scholar 

  48. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  49. Torres-Méndez LA, Dudek G (2005) Color correction of underwater images for aquatic robot inspection. In International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (pp. 60–73)

    Google Scholar 

  50. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317–325. https://doi.org/10.1016/S0020-0190(02)00447-7

    Article  MathSciNet  MATH  Google Scholar 

  51. Tripathi AK, Mukhopadhyay S, Dhara AK (2011) Performance metrics for image contrast. In Image Information Processing (ICIIP), 2011 International Conference on (pp. 1–4)

  52. Verma OP, Kumar P, Hanmandlu M, Chhabra S (2012) High dynamic range optimal fuzzy color image enhancement using artificial ant colony system. Appl Soft Comput 12(1):394–404

    Article  Google Scholar 

  53. Yang HY, Chen PY, Huang CC, Zhuang YZ, Shiau YH (2011) Low complexity underwater image enhancement based on dark channel prior. Proceedings - 2011 2nd International Conference on Innovations in Bio-Inspired Computing and Applications, IBICA 2011, 17–20. doi:10.1109/IBICA.2011.9

  54. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  55. Zuiderveld K (1994) Contrast Limited Adaptive Histogram Equalization. In Graphics Gems. https://doi.org/10.1016/B978-0-12-336156-1.50061-6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Sethi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, R., Sreedevi, I. Adaptive enhancement of underwater images using multi-objective PSO. Multimed Tools Appl 78, 31823–31845 (2019). https://doi.org/10.1007/s11042-019-07938-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07938-x

Keywords

Navigation