Skip to main content
Log in

A distance weighted linear regression classifier based on optimized distance calculating approach for face recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Linear regression technique is an efficient method to solve face recognition problem. It’s based on the theory that images in the same class will also belong to same linear subspace and they can be represented through a linear equation. However, this method suffers from some misclassification problems for the infinite ductility of regression equation, moreover, it also doesn’t make a proper and full use of the information in each sample. For overcoming these problems, a novel algorithm named the Distance Weighted Regression Classifier (DWLRC) is proposed here. It can be used for face recognition under different expression and illumination conditions through a distance weighted method, and it can also be used for optimizing the error in the final distance calculating stage. Experiments on three benchmarks show the better performance of our DWLRC compared with the traditional LRC and some state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Basri R, Jacobs DW (2003) Lambertian Reflectance and Linear Subspaces[J]. Pattern Anal Mach Intell IEEE Trans 25(2):218–233

    Article  Google Scholar 

  2. Belhumeur PN, Hespanha JP, Kriegman DJ (1996) Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection[C]// European Conference on Computer Vision. Springer-Verlag, 45–58

  3. Chai X, Shan S, Chen X et al (2007) Locally Linear Regression for Pose-Invariant Face Recognition[J]. IEEE Trans Image Processing 16(7):1716–1725

  4. Chien JT, Wu CC (2002) Discriminant Waveletfaces and Nearest Feature Classifiers for Face Recognition[M]. IEEE Computer Society

  5. Cover TM, Hart PE (1967) Nearest neighbor pattern classification[J]. IEEE Trans Inf Theory 13(1):21–27

    Article  Google Scholar 

  6. Feng Q, Yuan C, Huang J, et al. (2015) Center-based weighted kernel linear regression for image classification[C]// IEEE International Conference on Image Processing. IEEE, 3630–3634

  7. Feng Q, Zhu Q, Tang LL et al (2015) Double linear regression classification for face recognition[J]. J Mod Opt 62(4):288–295

    Article  Google Scholar 

  8. Heisele B, Ho P, Poggio T (2001) Face Recognition with Support Vector Machines: Global versus Component-based Approach[C]// Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on. IEEE, vol.2, 688–694

  9. Ho J, Yang MH, Lim J et al. (2003) Clustering appearances of objects under varying illumination conditions[C]// Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on. IEEE, vol.1, :I-11-I-18

  10. Jiang X, Mandal B, Kot A (2008) Eigenfeature Regularization and Extraction in Face Recognition[J]. IEEE Trans Pattern Anal Mach Intell 30(3):383–394

    Article  Google Scholar 

  11. Leibe B, Schiele B (2003) Analyzing appearance and contour based methods for object categorization[C]// Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on. IEEE, vol.2, II-409-15

  12. Lu J, Plataniotis KN, Venetsanopoulos AN et al (2006) Ensemble-based discriminant learning with boosting for face recognition[J]. IEEE Trans Neural Netw 17(1):166–178

    Article  Google Scholar 

  13. Lu Y, Fang X, Xie B (2014) Kernel linear regression for face recognition[J]. Neural Comput Applic 24(7–8):1843–1849

    Article  Google Scholar 

  14. Mi JX, Huang DS, Wang B et al (2013) The nearest-farthest subspace classification for face recognition[J]. Neurocomputing 113(7):241–250

    Article  Google Scholar 

  15. Naseem I, Togneri R, Bennamoun M (2010) Linear Regression for Face Recognition[J]. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Article  Google Scholar 

  16. Nefian AV (2002) Embedded Bayesian networks for face recognition[C]// IEEE International Conference on Multimedia and Expo, 2002. ICME '02. Proceedings. IEEE, vol.2, 133–136

  17. Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification[C]// Applications of Computer Vision, 1994. Proceedings of the Second IEEE Workshop on. IEEE Xplore, 138–142

  18. Semwal VB, Raj M, Nandi GC (2015) Biometric gait identification based on a multilayer perceptron[J]. Robot Auton Syst 65:65–75

    Article  Google Scholar 

  19. Semwal VB, Mondal K, Nandi GC (2017) Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach[J]. Neural Comput & Applic 28(3):565–574

    Article  Google Scholar 

  20. Semwal VB, Singha J, Sharma PK et al (2017) An optimized feature selection technique based on incremental feature analysis for bio-metric gait data classification[J]. Multimed Tools Appl 76(22):24457–24475

    Article  Google Scholar 

  21. Semwal VB, Gaud N, Nandi GC (2019) Human gait state prediction using cellular automata and classification using ELM[M]//Machine Intelligence and Signal Analysis. Springer, Singapore, pp 135–145

    Google Scholar 

  22. Wheeler FW, Liu X, Tu PH (2011) Handbook of Face Recognition (the second edition)[J]

    Chapter  Google Scholar 

  23. Xu Y, Zhang D, Yang J et al (2011) A Two-Phase Test Sample Sparse Representation Method for Use With Face Recognition[J]. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262

    Article  MathSciNet  Google Scholar 

  24. Yang J, Zhang D, Frangi AF et al (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition[J]. IEEE Trans Pattern Anal Mach Intell 26(1):131

    Article  Google Scholar 

  25. Zhu ML (2003) Face Recognition Using Kernel Methods[J]. Computer Science, 1457–1464

Download references

Acknowledgements

This work was supported by Shenzhen Science and Technology Plan under grant number JCYJ20180306171938767 and the Shenzhen Foundational Research Funding JCYJ20180507183527919.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Lu, H., Pang, Z. et al. A distance weighted linear regression classifier based on optimized distance calculating approach for face recognition. Multimed Tools Appl 78, 32485–32501 (2019). https://doi.org/10.1007/s11042-019-07943-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07943-0

Keywords

Navigation