Skip to main content
Log in

Steganalysis of homogeneous-representation based steganography for high dynamic range images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The Homogeneous-Representation Based Steganography (HRBS) embeds secret information into High Dynamic Range (HDR) images by encoding different homogeneous representations of pixels. After embedding information, the original cover HDR image can be completely recovered by the receiver. However, there is no corresponding steganalytic algorithm for such steganography. In the context of this, we propose a steganography detection algorithm based on non-zero homogeneity index, which is generally applicable to homogeneous-representation based steganography, and three specific stego pixel ratio estimation algorithms based on the least squares method, which are applicable to three typical HRBS algorithms respectively. The homogeneity indexes of pixels in the cover HDR image are usually zero, while the homogeneity indexes of pixels in the stego HDR image may be changed due to information embedding. Therefore, the proposed steganography detection algorithm determines the existence of secret information by detecting whether there are pixels with non-zero homogeneity index in the investigated image. Then, according to the relationship between the stego pixel ratio and the number of pixels with abnormal homogeneity index in the stego image, the proposed stego pixel ratio estimation algorithms use the least squares method to estimate the stego pixel ratio of stegos embedded by three typical HRBS algorithms. The experimental results show that when the length of the embedded secret message reaches 7 bits, the proposed steganography detection algorithm can correctly detect the stego image with a probability of over 99%. And the proposed stego pixel ratio estimation algorithms can achieve quite good performance when targeting against three typical HRBS algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Websites for downloading hdr images: http://www.cs.huji.ac.il/raananf/projects/hdrc/results.html, http://www.pauldebevec.com/Research/HDR/, http://people.csail.mit.edu/fredo/PUBLI/Siggraph2002/index.html#hdr

  2. The website of hdrshop: http://gl.ict.usc.edu/HDRShop/

  3. The website of hdr darkroom: http://www.everimaging.com/software/hdr-darkroom/

References

  1. Chang CC, Tseng HW (2004) A steganographic method for digital images using side match. Pattern Recogn Lett 25(12):1431–1437

    Google Scholar 

  2. Chang CC, Nguyen TS, Lin CC (2013) Distortion-free data embedding scheme for high dynamic range images. J Electron Sci Technol 11(1):20–26

    Google Scholar 

  3. Chang CC, Nguyen TS, Lin CC (2016) A new distortion-free data embedding scheme for high-dynamic range images. Multimed Tools Appl 75(1):145–163

    Google Scholar 

  4. Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2016) Compound rank-k projections for bilinear analysis. IEEE Trans Neural Netw Learn Syst 27(7):1502–1513

    MathSciNet  Google Scholar 

  5. Chang X, Ma Z, Lin M, Yang Y, Hauptmann AG (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26(8):3911–3920

    MathSciNet  MATH  Google Scholar 

  6. Chang X, Yu YL, Yang Y, Xing EP (2017) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell 39(8):1617–1632

    Google Scholar 

  7. Chen M, Sedighi V, Boroumand M, Fridrich J (2017) Jpeg-phase-aware convolutional neural network for steganalysis of jpeg images. In: Proceedings of the 5th ACM workshop on information hiding and multimedia security (IH&MMSec ’17). ACM, pp 75–84

  8. Cheng YM, Wang CM (2009) A novel approach to steganography in high-dynamic-range images. IEEE MultiMedia 16(3):70–80

    Google Scholar 

  9. Duan J, Bressan M, Dance C, Qiu G (2010) Tone-mapping high dynamic range images by novel histogram adjustment. Pattern Recogn 43(5):1847–1862

    Google Scholar 

  10. Durand F, Dorsey J (2002) Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans Graph 21(3):257–266

    Google Scholar 

  11. Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inform Forens Secur 7(3):868–882

    Google Scholar 

  12. Fridrich J, Pevnỳ T, Kodovskỳ J (2007) Statistically undetectable jpeg steganography: dead ends challenges, and opportunities. In: Proceedings of the 9th workshop on multimedia & security (MM&Sec 2007). ACM, pp 3–14

  13. Gu B, Li W, Zhu M, Wang M (2013) Local edge-preserving multiscale decomposition for high dynamic range image tone mapping. IEEE Trans Image Process 22(1):70–79

    MathSciNet  MATH  Google Scholar 

  14. Guo L, Ni J, Shi YQ (2012) An efficient jpeg steganographic scheme using uniform embedding. In: Proceedings of 2012 IEEE international workshop on information forensics and security (WIFS). IEEE, pp 169–174

  15. Holub V, Fridrich J (2012) Designing steganographic distortion using directional filters. In: Proceedings of 2012 IEEE international workshop on information forensics and security (WIFS). IEEE, pp 234–239

  16. Holub V, Fridrich J, Denemark T (2014) Universal distortion function for steganography in an arbitrary domain. EURASIP J Inf Secur 2014(1):1–13

    Google Scholar 

  17. Kodovskỳ J, Fridrich J, Holub V (2012) Ensemble classifiers for steganalysis of digital media. IEEE Trans Inform Forens Secur 7(2):432–444

    Google Scholar 

  18. Lee JW, Park RH, Chang S (2011) Local tone mapping using k-means algorithm and automatic gamma setting. In: Proceedings of 2011 IEEE international conference on consumer electronics (ICCE). IEEE, pp 807–808

  19. Li X, Lam KM, Shen L (2007) An adaptive algorithm for the display of high-dynamic range images. J Vis Commun Image Represent 18(5):397–405

    Google Scholar 

  20. Li B, Wang M, Huang J, Li X (2014) A new cost function for spatial image steganography. In: Proceedings of 2014 IEEE international conference on image processing (ICIP). IEEE, pp 4206–4210

  21. Li Z, Nie F, Chang X, Yang Y (2017) Beyond trace ratio: weighted harmonic mean of trace ratios for multiclass discriminant analysis. IEEE Trans Knowl Data Eng 29(10):2100–2110

    Google Scholar 

  22. Lin YT, Wang CM, Chen WS, Lin FP, Lin W (2017) A novel data hiding algorithm for high dynamic range images. IEEE Trans Multimed 19(1):196–211

    Google Scholar 

  23. Ma Y, Luo X, Li X, Bao Z, Zhang Y (2018) Selection of rich model steganalysis features based on decision rough set α-positive region reduction. IEEE Trans Circuits Syst Video Technol 29(2):336–350

    Google Scholar 

  24. Pevnỳ T, Filler T, Bas P (2010) Using high-dimensional image models to perform highly undetectable steganography. In: Proceedings of international workshop on information hiding (IH 2010). Springer, pp 161–177

  25. Reinhard E, Stark M, Shirley P, Ferwerda J (2002) Photographic tone reproduction for digital images. ACM Trans Graph 21(3):267–276

    Google Scholar 

  26. Solanki K, Sarkar A, Manjunath B (2007) Yass: yet another steganographic scheme that resists blind steganalysis. In: Proceedings of international workshop on information hiding (IH 2007). Springer, pp 16–31

  27. Song X, Liu F, Yang C, Luo X, Zhang Y (2015) Steganalysis of adaptive jpeg steganography using 2d gabor filters. In: Proceedings of the 3rd ACM workshop on information hiding and multimedia security (IH&MMSec ’15). ACM, pp 15–23

  28. Wang ZH, Lin TY, Chang CC, Lin CC (2012) A novel distortion-free data hiding scheme for high dynamic range images. In: Proceedings of 2012 fourth international conference on digital home (ICDH). IEEE, pp 33–38

  29. Ward G (1991) Real pixels graphics gems II, 80–83

  30. Xiang L, Li Y, Hao W, Yang P, Shen X (2018) Reversible natural language watermarking using synonym substitution and arithmetic coding. Comput Mater Continua 55(3):541–559

    Google Scholar 

  31. Yang C, Liu F, Luo X, Zeng Y (2013) Pixel group trace model-based quantitative steganalysis for multiple least-significant bits steganography. IEEE Trans Inform Forens Secur 8(1):216–228

    Google Scholar 

  32. Yang C, Luo X, Lu J, Liu F (2018) Extracting hidden messages of mlsb steganography based on optimal stego subset. Sci Chin Inform Sci 61(11):119103

    Google Scholar 

  33. Yu CM, Wu KC, Wang CM (2011) A distortion-free data hiding scheme for high dynamic range images. Displays 32(5):225–236

    Google Scholar 

  34. Zhang X, Wang S (2005) Steganography using multiple-base notational system and human vision sensitivity. IEEE Signal Process Lett 12(1):67–70

    Google Scholar 

  35. Zhang Y, Luo X, Yang C, Liu F (2017) Joint jpeg compression and detection resistant performance enhancement for adaptive steganography using feature regions selection. Multimed Tools Appl 76(3):3649–3668

    Google Scholar 

  36. Zhang Y, Qin C, Zhang W, Liu F, Luo X (2018) On the fault-tolerant performance for a class of robust image steganography. Signal Process 146:99–111

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61872448, U1536104, 61772549, U1736214, 61602508, 61601517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfang Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Yang, C., Liu, F. et al. Steganalysis of homogeneous-representation based steganography for high dynamic range images. Multimed Tools Appl 79, 20079–20105 (2020). https://doi.org/10.1007/s11042-019-08257-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08257-x

Keywords

Navigation