Skip to main content
Log in

Moving object detection using statistical background subtraction in wavelet compressed domain

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Moving object detection is a fundamental task and extensively used research area in modern world computer vision applications. Background subtraction is one of the widely used and the most efficient technique for it, which generates the initial background using different statistical parameters. Due to the enormous size of the video data, the segmentation process requires considerable amount of memory space and time. To reduce the above shortcomings, we propose a statistical background subtraction based motion segmentation method in a compressed transformed domain employing wavelet. We employ the weighted-mean and weighted-variance based background subtraction operations only on the detailed components of the wavelet transformed frame to reduce the computational complexity. Here, weight for each pixel location is computed using pixel-wise median operation between the successive frames. To detect the foreground objects, we employ adaptive threshold, the value of which is selected based on different statistical parameters. Finally, morphological operation, connected component analysis, and flood-fill algorithm are applied to efficiently and accurately detect the foreground objects. Our method is conceived, implemented, and tested on different real video sequences and experimental results show that the performance of our method is reasonably better compared to few other existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. www.changedetection.net

  2. http://www.cipr.rpi.edu/resource/sequences/sif.html

  3. https://vid.me/videodata

  4. http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

  5. http://clickdamage.com/sourcecode/cv_datasets.php

References

  1. Akula A, Khanna N, Ghosh R, Kumar S, Das A, Sardana HK (2014) Adaptive contour-based statistical background subtraction method for moving target detection in infrared video sequences. Infrared Physics and Technology 63:103–109

    Article  Google Scholar 

  2. Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using wavelet transform. IEEE Trans Image Process 1(2):205–220

    Article  Google Scholar 

  3. Babaee M, Dinh DT, Rigoll G (2018) A deep convolutional neural network for video sequence background subtraction. Pattern Recogn 76:635–649

    Article  Google Scholar 

  4. Bouwmans T, Javed S, Sultana M, Jung SK (2019) Deep neural network concepts for background subtraction: a systematic review and comparative evaluation. Neural Networks

  5. Bouwmans T, Silva C, Marghes C, Zitouni MS, Bhaskar H, Frelicot C (2018) On the role and the importance of features for background modeling and foreground detection. Computer Science Review 28:26–91

    Article  MathSciNet  Google Scholar 

  6. Bouwmans T, Vaswani N, Rodriguez P, Vidal R, Lin Z (2018) Introduction to the issue on robust subspace learning and tracking: theory, algorithms, and applications. IEEE Journal of Selected Topics in Signal Processing 12(6):1127–1130

    Article  Google Scholar 

  7. Bradley AP (2003) Shift-invariance in the discrete wavelet transform. 7th Digital Image computing: Techniques and Applications. Sydney

  8. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell (6):679–698

  9. Chen Y -M, Bajic IV, Saeedi P (2011) Moving region segmentation from compressed video using global motion estimation and Markov random fields. IEEE Transactions on Multimedia 13(3):421–431

    Article  Google Scholar 

  10. Choi JW, Whangbo TK, Kim CG (2015) A contour tracking method of large motion object using optical flow and active contour model. Multimed Tools Appl 74 (1):199–210

    Article  Google Scholar 

  11. Dou J, Qin Q, Tu Z (2019) Background subtraction based on deep convolutional neural networks features. Multimed Tools Appl 78(11):14549–14571

    Article  Google Scholar 

  12. Dougherty ER, Roberto LA (2003) Hands-on morphological image processing, vol 71. SPIE Optical Engineering Press, Washington

    Book  Google Scholar 

  13. Dufaux F, Konrad J (2000) Efficient, robust, and fast global motion estimation for video coding. IEEE Trans Image Process 9(3):497–501

    Article  Google Scholar 

  14. Farina A (1997) Linear and non-linear filters for clutter cancellation in radar systems. Journal of Signal Processing 59(1):101–112

    Article  MATH  Google Scholar 

  15. Fırat H, Uğurhan K, İsa Ş, Anıl A (2018) A novel method for robust object tracking with k-means clustering using histogram back-projection technique. Multimed Tools Appl: 1–14

  16. Gangal PP, Satpute VR, Kulat KD, Keskar AG (2014) Object detection and tracking using 2D—-DWT and variance method. In: Students conference on engineering and systems (SCES), pp 1–6

  17. Gao T, Z-g Liu (2008) Moving video object segmentation based on redundant wavelet transform. In: 2008 international conference on information and automation. IEEE, pp 156–160.

  18. Gao T, Liu Z-g, Yue S -h, Zhang J, Mei J-q, Gao W-c (2010) Robust background subtraction in traffic video sequence. J Cent South Univ Technol 17(1):187–195

    Article  Google Scholar 

  19. Haritaoglu I, Harwood D, Davis LS (2000) W4: real-time surveillance of people and their activities. IEEE Trans Pattern Anal Mach Intell 22(8):809–830

    Article  Google Scholar 

  20. Hong G-S, Kim B-G, Hwang Y-S, Kwon K-K (2016) Fast multi-feature pedestrian detection algorithm based on histogram of oriented gradient using discrete wavelet transform. Multimed Tools Appl 75(23):15229–15245

    Article  Google Scholar 

  21. Hsia C-H, Guo J-M (2014) Efficient modified directional lifting-based discrete wavelet transform for moving object detection. Signal Process 96:138–152

    Article  Google Scholar 

  22. Huang J-C, Hsieh W-S (2003) Wavelet-based moving object segmentation. Electron Lett 39(19):1380–1382

    Article  Google Scholar 

  23. Iqbal MZ, Ghafoor A, Siddiqui AM (2013) Satellite image resolution enhancement using dual-tree complex wavelet transform and nonlocal means. IEEE Geoscience Remote Sens Lett 10(3):451–455

    Article  Google Scholar 

  24. Khare M, Srivastava R, Khare A (2014) Single change detection-based moving object segmentation by using daubechies complex wavelet transform. IET Image Process 8(6):334–344

    Article  Google Scholar 

  25. Khare M, Srivastava R, Khare A (2015) Moving object segmentation in daubechies complex wavelet domain. SIViP 9(3):635–650

    Article  Google Scholar 

  26. Kushwaha AKS, Srivastava R (2014) Complex wavelet based moving object segmentation using approximate median filter based method for video surveillance. In: International advance computing conference. IEEE, pp 973–978

  27. Lama RK, Choi M, Kwon G (2016) Image interpolation for high-resolution display based on the complex dual-tree wavelet transform and hidden Markov model. Multimed Tools Appl 75(23):16487–16498

    Article  Google Scholar 

  28. Li SZ (2009) Markov random field modeling in image analysis. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  29. Li Y, Zhang L, Li B, Wei X, Yan G, Geng X, Jin Z, Xu Y, Wang H, Liu X (2015) The application study of wavelet packet transformation in the de-noising of dynamic EEG data. Bio-Medical Materials and Engineering 26 (s1):S1067–S1075

    Article  Google Scholar 

  30. Lina J-M (1997) Image processing with complex daubechies wavelets. J Math Imag Vis 7(3):211–223

    Article  MathSciNet  Google Scholar 

  31. Ma B, Huang L, Shen J, Shao L, Yang M-h, Porikli F (2016) Visual tracking under motion blur. IEEE Trans Image Process 25(12):5867–5876

    Article  MathSciNet  MATH  Google Scholar 

  32. Robert F, Wilcox LM (1994) Linear and non-linear filtering in stereopsis. J Vis Res 34(18):2431–2438

    Article  Google Scholar 

  33. Sakkos D, Liu H, Han J, Shao L (2018) End-to-end video background subtraction with 3d convolutional neural networks. Multimed Tools Appl 77(17):23023–23041

    Article  Google Scholar 

  34. Sarwas G, Skoneczny S (2015) Object localization and detection using variance filter. In: Image processing and communications challenges, vol 6. Springer, pp 195–202

  35. Selesnick IW (2001) Hilbert transform pairs of wavelet bases. IEEE Signal Process Lett 8(6):170–173

    Article  Google Scholar 

  36. Selesnick IW, Baraniuk RG, Kingsbury NC (2005) The dual-tree complex wavelet transform. IEEE Signal Processing Magazine 22(6):123–151

    Article  Google Scholar 

  37. Sengar SS, Mukhopadhyay S (2016) Moving object area detection using normalized self adaptive optical flow. Optik-International Journal for Light and Electron Optics 127(16):6258–6267

    Article  Google Scholar 

  38. Sengar SS, Mukhopadhyay S (2016) Moving object tracking using Laplacian-DCT based perceptual hash. In: International conference on wireless communications, signal processing and networking (WiSPNET). IEEE, pp 2345–2349

  39. Sengar SS, Mukhopadhyay S (2016) A novel method for moving object detection based on block based frame differencing. In: 3rd international conference on recent advances in information technology. IEEE, pp 467–472

  40. Sengar SS, Mukhopadhyay S (2017) Foreground detection via background subtraction and improved three-frame differencing. Arab J Sci Eng: 1–13

  41. Sengar SS, Mukhopadhyay S (2017) Motion detection using block based bi-directional optical flow method. J Vis Commun Image Represent 49:89–103

    Article  Google Scholar 

  42. Sengar SS, Mukhopadhyay S (2017) Moving object detection based on frame difference and w4. SIViP: 1–8

  43. Serbes G, Sakar BE, Gulcur HO, Aydin N (2015) An emboli detection system based on dual tree complex wavelet transform and ensemble learning. Appl Soft Comput 37:87–94

    Article  Google Scholar 

  44. Shanshan Z, Dominik KA, Christian B, Armin CB (2016) Fast moving pedestrian detection based on motion segmentation and new motion features. Multimed Tools Appl 75(11):6263–6282

    Article  Google Scholar 

  45. Tarik A, Sait C, Ali AS, Talha TT (2014) Robust gesture recognition using feature pre-processing and weighted dynamic time warping. Multimed Tools Appl 72 (3):3045–3062

    Article  Google Scholar 

  46. Töreyin BU, Cetin AE, Aksay A, Akhan MB (2005) Moving object detection in wavelet compressed video. Signal Processing: Image Communication 20 (3):255–264

    Google Scholar 

  47. Tulsyan A, Huang B, Gopaluni RB, Forbes JF (2014) Performance assessment, diagnosis, and optimal selection of non-linear state filters. J Process Control 24(2):460–478

    Article  Google Scholar 

  48. Vaswani N, Chi Y, Bouwmans T (2018) Rethinking pca for modern data sets theory, algorithms, and applications [scanning the issue]. Proc IEEE 106(8):1274–1276

    Article  Google Scholar 

  49. Wang Y, Jodoin P -M, Porikli F, Konrad J, Benezeth Y, Ishwar P (2014) CDNet 2014: an expanded change detection benchmark dataset. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 387–394

  50. Yang J, Park S-T (2003) An anti-aliasing algorithm for discrete wavelet transform. Mech Syst Signal Process 17(5):945–954

    Article  Google Scholar 

  51. Yang L, Cao J, Zhu W, Tang S (2015) Accurate and efficient object tracking based on passive RFID. IEEE Trans Mob Comput 14(11):2188–2200

    Article  Google Scholar 

  52. Yong T, Congzhe Z, Renshu G, Peng L, Bin Y (2017) Vehicle detection and recognition for intelligent traffic surveillance system. Multimed Tools Appl 76 (4):5817–5832

    Article  Google Scholar 

  53. Yu R, Ozkaramanli H (2005) Hilbert transform pairs of orthogonal wavelet bases: Necessary and sufficient conditions. IEEE Trans Signal Process 53(12):4723–4725

    Article  MathSciNet  MATH  Google Scholar 

  54. Yuhao L, Dong Y, An W, Wentao W (2018) Pedestrian tracking in surveillance video based on modified CNN. Multimed Tools Appl: 1–18

  55. Zheng A, Zou T, Zhao Y, Jiang B, Tang J, Li C (2019) Background subtraction with multi-scale structured low-rank and sparse factorization. Neurocomputing 328:113–121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Singh Sengar.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengar, S.S., Mukhopadhyay, S. Moving object detection using statistical background subtraction in wavelet compressed domain. Multimed Tools Appl 79, 5919–5940 (2020). https://doi.org/10.1007/s11042-019-08506-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08506-z

Keywords

Navigation