Skip to main content
Log in

Blind image recovery approach combing sparse and low-rank regularizations

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The only useful prior knowledge in blind compressive sensing is that a signal is sparse in an unknown dictionary. Usually, general dictionaries cannot sparsify all images well. It simultaneously optimizes the dictionary and sparse coefficient in the reconstruction process and has been demonstrated to obtain same results as those compressive sensing techniques based on the known dictionary. In this paper, we propose a novel blind compressive sensing method combing sparse and low-rank regularizations to obtain competitive recovery results. We employ truncated Schatten-p norm and lq norm to approximate rank and norm. At last, we give an optimization strategy based on alternating direction method of multipliers to solve the recovery model. Experimental results prove that our approach could obtain the higher Peak Signal to Noise Ratio values than other competitive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aghagolzadeh HRM (2015) arXiv:1508.00278

  2. Aharon M, Elad M, Bruckstein A (2006) . IEEE Trans Signal Process 54 (11):4311

    Article  Google Scholar 

  3. Ashwini K, Amutha R (2018) . Multimed Tools Appl 77(11):1

    Google Scholar 

  4. Bhave S, Lingala SG, Johnson CP, Magnotta VA, Jacob M (2016) . Magn Reson Med 75(3):1175

    Article  Google Scholar 

  5. Cai JF, Candès EJ, Shen Z (2010) . Siam J Optim 20(4):1956

    Article  MathSciNet  Google Scholar 

  6. Candes EJ, Wakin MB (2008) . IEEE Signal Process Mag 25(2):21

    Article  Google Scholar 

  7. Chartrand R, Yin W (2008) In: IEEE International conference on acoustics, speech and signal processing, pp 3869–3872

  8. Dong W, Shi G, Li X (2013) . IEEE Trans Image Process 22(2):700

    Article  MathSciNet  Google Scholar 

  9. Dong W, Shi G, Li X, Ma Y, Feng H (2014) . IEEE Trans Image Process 23(8):3618

    Article  MathSciNet  Google Scholar 

  10. Donoho DL (2006) . IEEE Trans Inf Theory 52(4):1289

    Article  Google Scholar 

  11. Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, Baraniuk RG (2008) . IEEE Signal Process Mag 25(2):83

    Article  Google Scholar 

  12. Egiazarian K, Foi A, Katkovnik V (2007) . IEEE Int Conf Image Process 1:549

    Google Scholar 

  13. Feng L, Sun H, Sun Q, Xia G (2016) . Signal Process Image Commun 47:28

    Article  Google Scholar 

  14. Feng L, Sun H, Sun Q, Xia G (2016) . Neurocomputing 216(C):45

    Article  Google Scholar 

  15. Feng L, Sun H, Sun Q, Xia G (2017) . J Vis Commun Image Represent 42:37

    Article  Google Scholar 

  16. Gleichman YES (2010) . IEEE Trans Inform Theory 57(10):6958

    Article  MathSciNet  Google Scholar 

  17. Gu S, Zhang L, Zuo W, Feng X (2014) In: Computer vision and pattern recognition, pp 2862–2869

  18. Hawe S, Kleinsteuber M, Diepold K (2013) . IEEE Trans Image Process 22(6):2138

    Article  MathSciNet  Google Scholar 

  19. He L, Carin L (2009) . IEEE Trans Signal Process 57(9):3488

    Article  MathSciNet  Google Scholar 

  20. Hu Y, Zhang D, Ye J, Li X, He X (2013) . IEEE Trans Pattern Anal Mach Intell 35(9):2117

    Article  Google Scholar 

  21. Lingala SG, Jacob M (2013) . IEEE Trans Med Imaging 32(6):1132

    Article  Google Scholar 

  22. Majumdar A (2015) . Magn Reson Imaging 33(1):174

    Article  Google Scholar 

  23. Silva J, Chen M, Eldar YC, Sapiro G, Carin L (2011) arXiv:1103.2469

  24. Starck J, Donoho DL, Candès EJ (2002) . IEEE Trans Image Process Publ IEEE Signal Process Soc 11(6):670

    Article  Google Scholar 

  25. Studer RGBC (2012) In: International conference on acoustics, speech and signal processing, pp 3341–3344

  26. Zhang J, Zhao D, Zhao C, Xiong R, Ma S, Gao W (2012) . IEEE J Emerging Selected Topics Circ Syst 2(3):380

    Article  Google Scholar 

  27. Zhang J, Zhao C, Zhao D, Gao W (2014) . Signal Process 103(10):114

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the anonymous referees as well as the Editor and Associate Editor for their valuable comments, which led to substantial improvements of the paper. This work was supported by the National Natural Science Foundation of China (No. 61801199), the Natural Science Fund Project of Colleges in Jiangsu Province (No. 18KJB520017), the High-level Talent Scientific Research Foundation of Jinling Institute of Technology (No. jit-b-201801 and jit-b-201815) and the Major Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJA510004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Zhu, J. & Huang, L. Blind image recovery approach combing sparse and low-rank regularizations. Multimed Tools Appl 79, 18059–18070 (2020). https://doi.org/10.1007/s11042-019-08575-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08575-0

Keywords

Navigation