Skip to main content

Advertisement

Log in

A low complexity and computationally scalable fast motion estimation algorithm for HEVC

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Motion Estimation (ME) is one of the most computationally demanding parts of video encoders. The Test Zone (TZ) search is a popular fast ME algorithm, which is recommended for High-Efficiency Video Coding (HEVC). While the TZ search achieves an excellent coding efficiency, it is not a favorable choice for hardware implementations due to 1) a relatively high computational complexity, 2) inducing data dependency among the neighboring blocks, which complicates hardware implementations and parallel processing in software implementations, and 3) lack of computational adjustability, which is required for video encoding in power-constrained devices. This paper diagnoses the cause of these issues to be in the multiple starting search points of the TZ search algorithm. Accordingly, a method is proposed to find a single reliable starting point that replaces the first step of the TZ search algorithm. To do so, both current and reference frames are analyzed using a complex wavelet transform, and similar salient points are identified among the two frames. Then a light-weight process is used to match these points to find a single reliable starting point. The reliability of this point leads to reduced zonal refinement range with negligible cost in compression efficiency. Since adjusting the refinement range can be used as an effective way for adjusting the complexity, this results in a computationally scalable ME algorithm, named FMECWT. In contrast to the existing methods, FMECWT does not rely on neighboring blocks, which eliminates the inherent data dependency of TZ search. Experimental results show that FMECWT achieves ~35% to ~85% ME time reduction compared to TZ search, with only 0.1% to 1.7% increase in BD-Rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sullivan GJ, Ohm J, Han W, Wiegand T (2012) Overview of the high efficiency video coding. IEEE Trans Circuits Syst Video Technol 22:1649–1668. https://doi.org/10.1109/TCSVT.2012.2221191

    Article  Google Scholar 

  2. Chen J, Alshina E, Sullivan GJ, et al (2017) Algorithm description of joint exploration test model 7 (JEM 7). JVET-G1001-v1

    Google Scholar 

  3. Hosseini E, Pakdaman F, Hashemi MR, Ghanbari M (2018) A computationally scalable fast intra coding scheme for HEVC video encoder. Multimed Tools Appl:1–24. https://doi.org/10.1007/s11042-018-6713-y

  4. Tsai S, Li C, Chen H et al (2013) A 1062Mpixels/s 8192x4320p high efficiency video coding (H.265) encoder chip. In: Symposium on VLSI circuits, pp 4–5

    Google Scholar 

  5. Fernández DG, Botella G, Del Barrio AA et al (2018) HEVC optimization based on human perception for real-time environments. Multimed Tools Appl:1–33. https://doi.org/10.1007/s11042-018-7033-y

  6. Correa G, Assuncao PA, Agostini LV, Da Silva Cruz LA (2016) Pareto-based method for high efficiency video coding with limited encoding time. IEEE Trans Circuits Syst Video Technol 26:1734–1745. https://doi.org/10.1109/TCSVT.2015.2469533

    Article  Google Scholar 

  7. Zhang J, Kwong STW, Zhao T, Ip HHS (2018) Complexity control in the HEVC intracoding for industrial video applications. IEEE Trans Ind Inf. https://doi.org/10.1109/TII.2018.2844214

  8. Zhang J, Kwong S, Zhao T, Pan Z (2018) CTU-level complexity control for high efficiency video coding. IEEE Trans Multimed 20:29–44. https://doi.org/10.1109/TMM.2017.2723238

    Article  Google Scholar 

  9. Penny W, Machado I, Porto M et al (2016) Pareto-based energy control for the HEVC encoder. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 814–818

  10. C. Rosewarne, Bross B, Naccari M, et al (2016) High efficiency video coding (HEVC) test model 16 (HM16) improved encoder description update 5. JCTVC-W1002

    Google Scholar 

  11. Jou S-Y, Chang S-J, Chang T-S (2015) Fast motion estimation algorithm and design for real time QFHD high efficiency video coding. IEEE Trans Circuits Syst Video Technol 25:1533–1544. https://doi.org/10.1109/TCSVT.2015.2389472

    Article  Google Scholar 

  12. Wang C-C, Li G-L (2017) Hardware-friendly advanced motion vector prediction method and its architecture design for high efficiency video coding. Multimed Tools Appl 76:25285–25296. https://doi.org/10.1007/s11042-017-4500-9

    Article  Google Scholar 

  13. Lin Y-K, Li D-W, Lin C-C et al (2008) A 242mW 10mm2 1080p H.264/AVC high-profile encoder chip. In: IEEE international solid-state circuits conference. IEEE, pp 314–615

  14. Tung-Chien Chen T-C, Shao-Yi Chien S-Y, Yu-Wen Huang Y-W et al (2006) Analysis and architecture design of an HDTV720p 30 frames/s H.264/AVC encoder. IEEE Trans Circuits Syst Video Technol 16:673–688. https://doi.org/10.1109/TCSVT.2006.873163

    Article  Google Scholar 

  15. Pakdaman F, Gabbouj M, Hashemi MR, Ghanbari M (2018) Fast motion estimation algorithm with efficient memory access for HEVC hardware encoders. In: 2018 7th European workshop on visual information processing (EUVIP). IEEE, pp 1–5

  16. Tohidypour HR, Pourazad MT, Nasiopoulos P (2016) Probabilistic approach for predicting the size of coding units in the quad-tree structure of the quality and spatial scalable HEVC. IEEE Trans Multimed 18:182–195. https://doi.org/10.1109/TMM.2015.2510332

    Article  Google Scholar 

  17. Lee T-K, Chan Y-L, Siu W-C (2017) Adaptive search range for HEVC motion estimation based on depth information. IEEE Trans Circuits Syst Video Technol 27:2216–2230. https://doi.org/10.1109/TCSVT.2016.2583979

    Article  Google Scholar 

  18. Goncalves P, Porto M, Zatt B et al (2018) Octagonal-axis raster pattern for improved test zone search motion estimation. In: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1763–1767

  19. Selesnick IW, Baraniuk RG, Kingsbury NG (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22:123–151

    Article  Google Scholar 

  20. Pakdaman F, Hashemi M-R, Ghanbari M (2017) Fast and efficient intra mode decision for HEVC, based on dual-tree complex wavelet. Multimed Tools Appl 76:9891–9906. https://doi.org/10.1007/s11042-016-3584-y

    Article  Google Scholar 

  21. Bjontegaard G (2001) Calculation of average PSNR differences between RD curves. In: 13th video coding expert gr meet

    Google Scholar 

  22. Yan C, Zhang Y, Xu J et al (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21:573–576. https://doi.org/10.1109/LSP.2014.2310494

    Article  Google Scholar 

  23. Zhu C, Lin X, Chau LP (2002) Hexagon-based search pattern for fast block motion estimation. IEEE Trans Circuits Syst Video Technol 12:349–355. https://doi.org/10.1109/TCSVT.2002.1003474

    Article  Google Scholar 

  24. Purnachand N, Alves LN, Navarro A (2012) Fast motion estimation algorithm for HEVC. In: IEEE international conference on consumer electronics, Berlin, pp 34–37

  25. Singh K, Ahamed SR (2018) Computationally efficient motion estimation algorithm for HEVC. J Signal Process Syst 90:1713–1727. https://doi.org/10.1007/s11265-017-1321-z

    Article  Google Scholar 

  26. Li X, Wang R, Cui X, Wang W (2015) Context-adaptive fast motion estimation of HEVC. In: IEEE international symposium on circuits and systems, pp 2784–2787

    Google Scholar 

  27. Elsabrouty M, Shalaby A, Mehdipour F et al (2016) Adaptive low-complexity motion estimation algorithm for high efficiency video coding encoder. IET Image Process 10:438–447. https://doi.org/10.1049/iet-ipr.2015.0666

    Article  Google Scholar 

  28. Yang S-H, Yang H-J, Jiang J-Z (2014) Fast motion estimation for HEVC with directional search. Electron Lett 50:673–675. https://doi.org/10.1049/el.2014.0536

    Article  Google Scholar 

  29. Goncalves P, Correa G, Porto M et al (2017) Multiple early-termination scheme for TZ search algorithm based on data mining and decision trees. In: 2017 IEEE 19th international workshop on multimedia signal processing (MMSP). IEEE, pp 1–6

  30. Hu N, Yang E (2014) Fast motion estimation based on confidence interval. IEEE Trans Circuits Syst Video Technol 24:1310–1322

    Article  Google Scholar 

  31. Kim KY, Kim HY, Choi JS, Park GH (2014) MC complexity reduction for generalized P and B pictures in HEVC. IEEE Trans Circuits Syst Video Technol 24:1723–1728. https://doi.org/10.1109/TCSVT.2014.2308651

    Article  Google Scholar 

  32. Lee J (2017) Energy efficient processing of motion estimation for embedded multimedia systems. Multimed Tools Appl 76:24749–24765. https://doi.org/10.1007/s11042-017-4645-6

    Article  Google Scholar 

  33. Kalali E, Mert AC, Hamzaoglu I (2016) A computation and energy reduction technique for HEVC discrete cosine transform. IEEE Trans Consum Electron 62:166–174. https://doi.org/10.1109/TCE.2016.7514716

    Article  Google Scholar 

  34. Chen J, Wang B, Liao J, Cai C (2018) Fast 3D-HEVC inter mode decision algorithm based on the texture correlation of viewpoints. Multimed Tools Appl:1–15. https://doi.org/10.1007/s11042-018-6832-5

  35. Xiong J, Li H, Wu Q, Meng F (2014) A fast HEVC inter CU selection method based on pyramid motion divergence. IEEE Trans Multimed 16:559–564. https://doi.org/10.1109/TMM.2013.2291958

    Article  Google Scholar 

  36. Shen L, Zhang Z, Liu Z (2014) Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spatiotemporal correlations. IEEE Trans Circuits Syst Video Technol 24:1709–1722. https://doi.org/10.1109/TCSVT.2014.2313892

    Article  Google Scholar 

  37. Correa G, Assuncao P, Agostini L, Da Silva Cruz LA (2013) Coding tree depth estimation for complexity reduction of HEVC. Data Compress Conf Proc:43–52. https://doi.org/10.1109/DCC.2013.12

  38. Correa G, Assuncao P, Agostini L, da Silva Cruz LA (2016) Complexity scalability for real-time HEVC encoders. J Real-Time Image Process 12:107–122. https://doi.org/10.1007/s11554-013-0392-8

    Article  Google Scholar 

  39. Zhang Y, Huang S, Li H, Chao H (2013) An optimally complexity scalable multi-mode decision algorithm for HEVC. In: 2013 IEEE international conference on image processing. IEEE, pp 2000–2004

  40. Magarey J, Kingsbury N (1998) Motion estimation using a complex-valued wavelet transform. IEEE Trans Signal Process 46:1069–1084. https://doi.org/10.1109/78.668557

    Article  MathSciNet  MATH  Google Scholar 

  41. Dai W, Au OC, Li S et al (2012) Adaptive search range algorithm based on Cauchy distribution. In: IEEE visual communications and image processing, pp 1–5

    Google Scholar 

  42. Du L, Liu Z, Ikenaga T, Wang D (2015) Linear adaptive search range model for uni-prediction and motion analysis for bi-prediction in HEVC. In: International conference on image processing, pp 3671–3675

    Google Scholar 

  43. Lee T, Chan Y, Siu W (2016) Adaptive search range by neighbouring depth intensity weighted sum for HEVC texture coding. Electron Lett:3–4

  44. Da Chien W, Liao KY, Yang JF (2014) Enhanced AMVP mechanism based adaptive motion search range decision algorithm for fast HEVC coding. In: International conference on image processing, pp 3696–3699

    Google Scholar 

  45. Liu Q, Liu L, Hao L, Peng T (2018) Fast motion estimation algorithm for high efficient video coding. In: 2018 IEEE 4th international conference on computer and communications (ICCC). IEEE, pp 6–10

  46. (2016) Intel 64 and IA-32 architectures optimization reference manual

  47. (2012) Methodology for the subjective assessment of the quality of television pictures. Int Telecommun Union Recomm ITU-R BT500–13. https://doi.org/http://www.itu.int/rec/R-REC-BT.500/en

  48. Li Z, Aaron A, Katsavounidis I, et al Toward a practical perceptual video quality metric. http://techblog.netflix.com/2016/06/toward-practical-perceptual-video.html. Accessed 20 Oct 2019

  49. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  50. Rabaey J (2009) Low power design essentials, 1st edn. Springer US

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Reza Hashemi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakdaman, F., Hashemi, M.R. & Ghanbari, M. A low complexity and computationally scalable fast motion estimation algorithm for HEVC. Multimed Tools Appl 79, 11639–11666 (2020). https://doi.org/10.1007/s11042-019-08593-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08593-y

Keywords

Navigation