Skip to main content

Advertisement

Log in

A new image segmentation method based on the ICSO-ISPCNN model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

To address the issue of parameter settings in a pulse coupled neural network (PCNN), we propose a new image segmentation method based on the improved chicken swarm optimization algorithm and improved simplified PCNN (ICSO-ISPCNN) model. First, we improved a simplified PCNN model by modifying the dynamic threshold function and meanwhile improved the chicken swarm optimization (CSO) algorithm by introducing the survival of the fittest mechanism. Then, a product cross entropy is utilized as the fitness function of the ICSO algorithm, and the parameter values of the ISPCNN model are determined through the effective teamwork of roosters, hens, and chicks in the chicken swarm. Finally, we can achieve the automatic image segmentation via the ISPCNN model, which has the best parameter values. The detailed experiments indicate that our method has more superior performance in terms of convergence and segmentation accuracy than methods based on the genetic algorithm and ant colony optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Badrinarayanan V, Kendall A, Cipolla R (Jan. 2017) SegNet: a deep convolutional encoder-decoder architecture for scene segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  2. Chen YL, Ma YD, Kim DH, Park SK (2015) Region-based object recognition by color segmentation using a simplified PCNN. IEEE Transactions on neural networks and learning systems 26(8):1682–1697. https://doi.org/10.1109/TNNLS.2014.2351418

    Article  MathSciNet  Google Scholar 

  3. Chen YL, Park SK, Ma YD, Ala R (2011) A new automatic parameter setting method of a simplified PCNN for image segmentation. IEEE Trans Neural Netw 22(6):880–892. https://doi.org/10.1109/TNN.2011.2128880

    Article  Google Scholar 

  4. Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1989) Models of brain function: a neural network for feature linking via synchronous activity: results from cat visual cortex and from simulations. Can J Microbiol 46(8):759–763

    Google Scholar 

  5. Ganesh M, Naresh M, Arvind C (2017) MRI brain image segmentation using enhanced adaptive fuzzy K-means algorithm. Intell Autom Soft Comput 23(2):325–330. https://doi.org/10.1080/10798587.2016.1231472

    Article  Google Scholar 

  6. Gao C, Zhou DG, Guo YC (2013) Automatic iterative algorithm for image segmentation using a modified pulse-coupled neural network. Neurocomputing 119:332–338. https://doi.org/10.1016/j.neucom.2013.03.025

    Article  Google Scholar 

  7. Gao C, Zhou DG, Guo YC (2014) An iterative Thresholding segmentation model using a modified pulse coupled neural network. Neural Process Lett 39(1):81–95. https://doi.org/10.1007/s11063-013-9291-z

    Article  Google Scholar 

  8. Gómez W, Pereira WCA, Infantosi AFC (2016) Evolutionary pulse-coupled neural network for segmenting breast lesions on ultrasonography. Neurocomputing 175:877–888. https://doi.org/10.1016/j.neucom.2015.04.121

    Article  Google Scholar 

  9. Gueguen L, Velasco-Forero S, Soille P (2014) Local mutual information for dissimilarity-based image segmentation. J Math Imaging Vis 48(3):625–644. https://doi.org/10.1007/s10851-013-0432-9

    Article  MATH  Google Scholar 

  10. Jian MW, Lam KM, Dong JY et al (2015) Visual-patch-attention-aware saliency detection. IEEE Transactions on Cybernetics 45(8):1575–1586. https://doi.org/10.1109/tcyb.2014.2356200

    Article  Google Scholar 

  11. Jian MW, Qi Q, Dong JY et al (2017) Saliency detection using quaternionic distance based weber local descriptor and level priors. Multimed Tools Appl 77(11):14343–14360. https://doi.org/10.1007/s11042-017-5032-z

    Article  Google Scholar 

  12. Jian MW, Zhang WY, Yu H et al (2018) Saliency detection based on directional patches extraction and principal local color contrast. J Vis Commun Image Represent 57:1–11. https://doi.org/10.1016/j.jvcir.2018.10.008

    Article  Google Scholar 

  13. Johnson JL, Mary LP (May 1999) PCNN models and applications. IEEE Trans Neural Netw 10(3):480–498. https://doi.org/10.1109/72.761706

    Article  Google Scholar 

  14. Liang JH, Wang LF, Ma M, Zhang J (2018) A fast SAR image segmentation method based on improved chicken swarm optimization algorithm. Multimed Tools Appl:1–19. https://doi.org/10.1007/s11042-018-6119-x

  15. Liao CZ, Zhang D, Jiang MY (2014) Image segmentation based on ABC-PCNN model. J Nanjing U Sci Techno 38(4):558–565

    Google Scholar 

  16. Lin YF, Wu LX (2018) Improved abrasive image segmentation method based on bit-plane and morphological reconstruction. Multimed Tools Appl:1–14. https://doi.org/10.1007/s11042-018-6687-9

  17. Liu JP, Xu SH, Zhang FH et al (2016) A hybrid genetic-ant colony optimization algorithm for the optimal path selection. Intell Autom Soft Comput 23:1–8. https://doi.org/10.1080/10798587.2016.1196926

    Article  Google Scholar 

  18. Ma YD, Dai RL, Li L (2002) Automated image segmentation using pulse coupled neural networks and image’s entropy. Journal of China Institute of Communications 23(1):46–51

    Google Scholar 

  19. Ma M, Liang JH, Guo M et al (2011) SAR image segmentation based on artificial bee Colony algorithm. Appl Soft Comput 11(8):5205–5214. https://doi.org/10.1016/j.asoc.2011.05.039

    Article  Google Scholar 

  20. Ma YD, Liu Q, Qian ZB (2004) Automated image segmentation using improved PCNN model based on cross-entropy. Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, Hong Kong, pp 743–746

    Google Scholar 

  21. Ma YD, Shi F, Li L (2006) Study of automated PCNN system based on genetic algorithm. Journal of System Simulation 18(3):722–725. https://doi.org/10.3969/j.issn.1004-731X.2006.03.048

    Article  Google Scholar 

  22. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proceedings Eighth IEEE International Conference on Computer Vision, Vancouver, pp 416–423

    Google Scholar 

  23. Meilǎ M (2005) Comparing clusterings - an axiomatic view. Proceedings of the 22nd International Conference on Machine Learning, Bonn, pp 577–584

    Google Scholar 

  24. Meng XB, Liu Y, Gao XZ, Zhang HZ (2014) A new bio-inspired algorithm: chicken swarm optimization, vol 8794. Proceedings of the 5th International Conference on Swarm Intelligence, Hefei, pp 86–94

    Google Scholar 

  25. Oliva D, Hinojosa S, Cuevas E, Pajares G, Avalos O (2017) Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm. Expert Syst Appl 79:164–180. https://doi.org/10.1016/j.eswa.2017.02.042

    Article  Google Scholar 

  26. Oliva D, Hinojosa S, Osuna-Enciso V, Cuevas E, Pérez-Cisneros M, Sanchez-Ante G (2017) Image segmentation by minimum cross entropy using evolutionary methods. Soft Comput:1–20. https://doi.org/10.1007/s00500-017-2794-1

  27. Pare S, Kumar A, Bajaj V, Singh GK (2017) An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy. Appl Soft Comput 61:570–592. https://doi.org/10.1016/j.asoc.2017.08.039

    Article  Google Scholar 

  28. Qu SR, Yang HH (2015) Infrared image segmentation based on PCNN with genetic algorithm parameter optimization. High Power Laser Part Beams 27(5):38–43

    Google Scholar 

  29. Shih HC, Liu ER (2016) Automatic reference color selection for adaptive mathematical morphology and application in image segmentation. IEEE Trans Image Process 25(10):4665–4676. https://doi.org/10.1109/TIP.2016.2586658

    Article  MathSciNet  MATH  Google Scholar 

  30. Tian F, Zhang R, Lewandowski J, Chao K-M, Li L, Dong B (2017) Deadlock-free migration for virtual machine consolidation using chicken swarm optimization algorithm. J Intell Fuzzy Syst 32(2):1389–1400. https://doi.org/10.3233/JIFS-169136

    Article  Google Scholar 

  31. Unnikrishnan R, Hebert M (2005) Measures of similarity. Seventh IEEE Workshops on Applications of Computer Vision, Breckenridge, pp 394–394

    Google Scholar 

  32. Wang Q, Gao JY, Li XL (2019) Weakly Supervised Adversarial Domain Adaptation for Semantic Segmentation in Urban Scenes. IEEE Trans Image Process:1. https://doi.org/10.1109/tip.2019.2910667

  33. Wang Q, Gao JY, Yuan Y (2017) A Joint Convolutional Neural Networks and Context Transfer for Street Scenes Labeling. IEEE Trans Intell Transp Syst 99:1–14. https://doi.org/10.1109/TITS.2017.2726546

    Article  Google Scholar 

  34. Wu YP, Peng XQ, Ruan K, Hu ZK (2017) Improved image segmentation method based on morphological reconstruction. Multimed Tools Appl 76(19):19781–19793. https://doi.org/10.1007/s11042-015-3192-2

    Article  Google Scholar 

  35. Wu DH, Xu SP, Kong F (2016) Convergence analysis and improvement of the chicken swarm optimization algorithm. IEEE Access 4:9400–9412. https://doi.org/10.1109/ACCESS.2016.2604738

    Article  Google Scholar 

  36. Xu XZ, Liang TM, Wang GY, Wang MX, Wang XS (2017) Self-adaptive PCNN based on the ACO algorithm and its application on medical image segmentation. Intell Autom Soft Comput 23(2):303–310. https://doi.org/10.1080/10798587.2016.1210258

    Article  Google Scholar 

  37. Yu CQ, Wang JB, Peng C et al (2018) BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation. Proceedings of European Conference on Computer Vision:334–349. https://doi.org/10.1007/978-3-030-01261-8_20

Download references

Acknowledgments

This work is supported by Hainan Provincial Natural Science Foundation of China (618QN220), the Agricultural Science and Technology Innovation and Public Relations project of Shaanxi Province of China (2016NY-176), and the National Natural Science Foundation of China (61877038, 61373120).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifang Wang or Miao Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Wang, L. & Ma, M. A new image segmentation method based on the ICSO-ISPCNN model. Multimed Tools Appl 79, 28131–28154 (2020). https://doi.org/10.1007/s11042-019-08596-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08596-9

Keywords

Navigation