Skip to main content
Log in

Improvement of viewing experience on stereoscopic image guided by human stereo vision

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recent 3D visual quality assessment methods still have difficulties in providing the best viewing experience from the viewer’s perspective due to the ambiguous understanding of human stereo vision. One of the key reasons is that the disparity gradient, which affects human depth perception, is hard to control for the input stereo image pair. In this paper, we mathematically formulated the human disparity gradient and optimized the disparity gradients for each stereo image pair. Considering that the disparity gradient needs to be limited to a specific range to satisfy the human visual preference and comfortableness, we proposed a new quantitative definition of disparity gradient and trained the optimal disparity gradients were learned from the pilot study to enhance the viewing experience. Extensive subjective evaluations have demonstrated the competitiveness of this proposed method for the improvement of the viewing experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bland J, Altman D (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160

    Article  Google Scholar 

  2. Bulthoff H, Fahle M, Wegmann M (1991) Perceived depth scales with disparity gradient. Perception 20(2):145–153

    Article  Google Scholar 

  3. Cao X, Li Z, Dai Q (2011) Semi-automatic 2D-to-3D conversion using disparity propagation. IEEE Trans Broadcast 57(2):491–499

    Article  Google Scholar 

  4. Chang C, Lin C (2011) LIBSVM. ACM Trans Intell Syst Technol 2(3):1–27

    Article  Google Scholar 

  5. Chen M-J, Cormack LK, Bovik AC (2013) No-reference quality assessment of natural stereopairs. IEEE Trans Image Process 22(9):3379–3391

    Article  MathSciNet  Google Scholar 

  6. Chen W, Jérôme F, Barkowsky M, Le Callet P (2012) Exploration of quality of experience of stereoscopic images: Binocular depth. In: Proc. Int. Workshop Video Process. Quality Metrics Consum. Electron. Scottsdale, pp. 116–121

  7. Chen M-J, Kwon D-K, Bovik AC (2012) Study of subject agreement on stereoscopic video quality. In: Proc. IEEE Southwest Symp. Image Anal. Interpretation, Santa Fe, NM, USA, pp. 173–176

  8. Filippini H, Banks M (2009) Limits of stereopsis explained by local cross-correlation. J Vis 9(1):8–8

    Article  Google Scholar 

  9. Howard I (2012) Perceiving in depth, volume 1: basic mechanisms. Oxford University Press, New York

    Book  Google Scholar 

  10. Huang W, Cao X, Lu K, Dai Q, Bovik A (2015) Toward naturalistic 2D-to-3D conversion. IEEE Trans Image Process 24(2):724–733

    Article  MathSciNet  Google Scholar 

  11. Jung C, Cao L, Liu H, Kim J (2015) Visual comfort enhancement in stereoscopic 3D images using saliency-adaptive nonlinear disparity mapping. Displays 40:17–23

    Article  Google Scholar 

  12. Kane D, Guan P, Banks M (2014) The Limits of Human Stereopsis in Space and Time. J Neurosci 34(4):1397–1408

    Article  Google Scholar 

  13. Lambooij M (2009) Visual discomfort and visual fatigue of Stereoscopic displays: A review. Journal of Imaging Science and Technology 53(3):030201

    Article  Google Scholar 

  14. Li Z, Cao X, Dai Q (2012) A novel method for 2D-to-3D video conversion using bi-directional motion estimation. Proc IEEE ICASSP:1429–1432

  15. McIntire JP, Havig PR, Geiselman EE (2014) Stereoscopic 3D displays and human performance: A comprehensive review. Displays 35(1):18–26

    Article  Google Scholar 

  16. McKee S, Verghese P (2002) Stereo transparency and the disparity gradient limit. Vis Res 42(16):1963–1977

    Article  Google Scholar 

  17. Moorthy AK, Su C-C, Mittal A, Bovik AC (2013) Subjective evaluation of stereoscopic image quality. Signal Process Image Commun 28(8):870–883

    Article  Google Scholar 

  18. Oh H, Kim J, Kim J, Kim T, Lee S, Bovik AC (2017) Enhancement of Visual Comfort and Sense of Presence on Stereoscopic 3D Images. IEEE Trans Image Process 26(8):3789–3801

    Article  MathSciNet  Google Scholar 

  19. Saxena A, Sun M, Ng A (2009) Make3D: Learning 3D scene structure from a single still image. IEEE Trans Pattern Anal Mach Intell 31(5):824–840

    Article  Google Scholar 

  20. Seuntiens P, Meesters L, Ijsselsteijn W (2006) Perceived quality of compressed stereoscopic images: Effects of symmetric and asymmetric JPEG coding and camera separation. ACM Trans Appl Perception 3(2):95–109

    Article  Google Scholar 

  21. Shibata T, Kim J, Hoffman DM, Banks MS (2011) The zone of comfort: Predicting visual discomfort with stereo displays. J Vis 11(8):11–11

    Article  Google Scholar 

  22. Stereo Photo Maker (English) (2017). Software available from http://stereo.jpn.org/eng/stphmkr/. Accessed 30 June 2018

  23. Tombari F, Mattoccia S, Di Stefano L (2010) Stereo for robots: quantitative evaluation of efficient and low-memory dense stereo algorithms. In: 11th Int. Conf. on Control, Automation, Robotics and Vision (ICARCV 2010), pp. 73–78

  24. Trivedi H, Lloyd S (1985) The role of disparity gradient in stereo vision. Perception 14(6):685–690

    Article  Google Scholar 

  25. Tsutsui K, Taira M, Sakata H (2005) Neural mechanisms of three-dimensional vision. Neurosci Res 51(3):221–229

    Article  Google Scholar 

  26. Tyler W (1975) Spatial organization of binocular disparity sensitivity. Vis Res 15(5):583–590

    Article  Google Scholar 

  27. Urvoy M, Barkowsky M, Callet PL (2013) How visual fatigue and discomfort impact 3D-TV quality of experience: A comprehensive review of technological, psychophysical, and psychological factors. Ann Telecommun 68(11–12):641–655

    Article  Google Scholar 

  28. Wang J, Lai S, Li M (2012) Improved Image Fusion Method Based on NSCT and Accelerated NMF. Sensors 12(12):5872–5887

    Article  Google Scholar 

  29. Ware C (2004) Information visualization: Perception for design (interactive technologies). Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  30. Zellinger, W, Moser BA, Chouikhi A, Seitner F, Nezveda M, Gelautz M (2016) Linear optimization approach for depth range adaption of stereoscopic videos. Stereoscopic Displays and Applications XXVII, IS&T Electronic Imaging

  31. Zhang Z, Edwards M, Schor C (2001) Spatial interactions minimize relative disparity between adjacent surfaces. Vis Res 41:2995–3007

    Article  Google Scholar 

  32. Zhang L, Tam WJ (2005) Stereoscopic image generation based on depth images for 3D TV. IEEE Trans Broadcast 51(2):191–199

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to thank the volunteers to conduct the subjective experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqin Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Park, S.H. & Zhang, X. Improvement of viewing experience on stereoscopic image guided by human stereo vision. Multimed Tools Appl 79, 4377–4394 (2020). https://doi.org/10.1007/s11042-019-7195-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7195-2

Keywords

Navigation