Skip to main content
Log in

Robust particle tracking via spatio-temporal context learning and multi-task joint local sparse representation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Particle filters have been proven very successful for non-linear and non-Gaussian estimation problems and extensively used in object tracking. However, high computational costs and particle decadency problem limit its practical application. In this paper, we present a robust particle tracking approach based on spatio-temporal context learning and multi-task joint local sparse representation. The proposed tracker samples particles according to the confidence map constructed by the spatio-temporal context information of the target. This sampling strategy can ameliorate problems of sample impoverishment and particle degeneracy, target state distribution to obtain robust tracking performance. In order to locate the target more accurately and be less sensitive to occlusion, the local sparse appearance model is adopted to capture the local and structural information of the target. Finally, the multi-task learning where the representations of particles are learned jointly is employed to further improve tracking performance and reduce overall computational complexity. Both qualitative and quantitative evaluations on challenging benchmark image sequences have demonstrated that the proposed tracking algorithm performs favorably against several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 798–805

  2. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2)

  3. Babenko B, Yang M-H, Belongie S (2009) Visual tracking with online multiple instance learning. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 983–990

  4. Bao C, Wu Y, Ling H, Ji H (2012) Real time robust l1 tracker using accelerated proximal gradient approach. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1830–1837

  5. Black MJ, Jepson AD (1998) Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vis 26(1):63–84

    Article  Google Scholar 

  6. Cai B, Xu X, Xing X, Jia K, Miao J, Tao D (2016) BIT: biologically inspired tracker. IEEE Trans Image Process 25(3):1327–1339

    Article  MathSciNet  MATH  Google Scholar 

  7. Caruana R (1997) Multitask learning. Mach Learn 28(1):41–75

    Article  MathSciNet  Google Scholar 

  8. Chen X, Pan W, Kwok JT, Carbonell JG (2009) Accelerated gradient method for multi-task sparse learning problem. In: Ninth IEEE international conference on data mining. IEEE, pp 746–751

  9. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577

    Article  Google Scholar 

  10. Danelljan M, Häger G, Khan FS, Felsberg M (2017) Discriminative scale space tracking. IEEE Trans Pattern Anal Mach Intell 39(8):1561–1575

    Article  Google Scholar 

  11. Dinh TB, Vo N, Medioni G (2011) Context tracker: exploring supporters and distracters in unconstrained environments. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1177–1184

  12. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting. In: British machine vision conference, vol 5, p 6

  13. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: European conference on computer vision. Springer, pp 234–247

  14. Grabner H, Matas J, Van Gool L, Cattin P (2010) Tracking the invisible: learning where the object might be. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1285–1292

  15. Henriques JF, Caseiro R, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: European conference on computer vision. Springer, pp 702–715

  16. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596

    Article  Google Scholar 

  17. Jepson AD, Fleet DJ, El-Maraghi TF (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25(10):1296–1311

    Article  Google Scholar 

  18. Ji Z, Ma Y, Pang Y, Li X (2017) Query-aware sparse coding for multi-video summarization. arXiv preprint arXiv:170704021

    Google Scholar 

  19. Ji Z, Wang J, Yu Y, Pang Y, Han J (2019) Class-specific synthesized dictionary model for zero-shot learning. Neurocomputing 329: 339-347.

  20. Jia X, Lu H, Yang M-H (2012) Visual tracking via adaptive structural local sparse appearance model. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1822–1829

  21. Jiang N, Liu W, Wu Y (2011) Adaptive and discriminative metric differential tracking. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1161–1168

  22. Kwon J, Lee KM (2010) Visual tracking decomposition. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1269–1276

  23. Leistner C, Godec M, Saffari A, Bischof H (2010) On-line multi-view forests for tracking. In: Joint pattern recognition symposium. Springer, pp 493–502

  24. Li X, Dick A, Wang H, Shen C, van den Hengel A (2011) Graph mode-based contextual kernels for robust SVM tracking. In: IEEE international conference on computer vision. IEEE, pp 1156–1163

  25. Liu R, Cheng J, Lu H (2009) A robust boosting tracker with minimum error bound in a co-training framework. In: IEEE 12th international conference on computer vision. IEEE, pp 1459–1466

  26. Liu B, Huang J, Kulikowski C, Yang L (2013) Robust visual tracking using local sparse appearance model and k-selection. IEEE Trans Pattern Anal Mach Intell 35(12):2968–2981

    Article  Google Scholar 

  27. Mei X, Ling H (2009) Robust visual tracking using ℓ 1 minimization. In: IEEE 12th international conference on computer vision. IEEE, pp 1436–1443

  28. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

    Article  Google Scholar 

  29. Mei X, Ling H, Y W, Blasch E, Bai L (2011) Minimum error bounded efficient ℓ1 tracker with occlusion detection. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1257–1264

  30. Pérez P, Hue C, Vermaak J, Gangnet M (2002) Color-based probabilistic tracking. In: European conference on computer vision. Springer, pp 661–675

  31. Ross DA, Lim J, Lin R-S, Yang M-H (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1-3):125–141

    Article  Google Scholar 

  32. Wen L, Cai Z, Lei Z, Yi D, Li SZ (2012) Online spatio-temporal structural context learning for visual tracking. In: European conference on computer vision. Springer, pp 716–729

  33. Wu Y, Lim J, Yang M-H (2013) Online object tracking: a benchmark. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 2411–2418

  34. Wu S, Chen H, Bai Y, Zhu G (2016) A remote sensing image classification method based on sparse representation. Multimed Tools Appl 75(19):12137–12154

    Article  Google Scholar 

  35. Xu X, Shimada A, Nagahara H, Taniguchi R-i (2016) Learning multi-task local metrics for image annotation. Multimed Tools Appl 75(4):2203–2231

    Article  Google Scholar 

  36. Yang M, Wu Y, Hua G (2009) Context-aware visual tracking. IEEE Trans Pattern Anal Mach Intell 31(7):1195–1209

    Article  Google Scholar 

  37. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 2042–2049

  38. Zhang K, Zhang L, Yang M-H (2012) Real-time compressive tracking. In: European conference on computer vision. Springer, pp 864–877

  39. Zhang K, Zhang L, Yang MH, Zhang D (2014) Fast tracking via dense spatio-temporal context learning. In: European conference on computer vision. Springer, pp 127–141

  40. Zhong W, Lu H, Yang M-H (2014) Robust object tracking via sparse collaborative appearance model. IEEE Trans Image Process 23(5):2356–2368

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou SK, Chellappa R, Moghaddam B (2004) Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans Image Process 13(11):1491–1506

    Article  Google Scholar 

  42. Zhu G, Wang J, Zhao C, Lu H (2015) Weighted part context learning for visual tracking. IEEE Trans Image Process 24(12):5140–5151

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2016YFB0502502), the National Natural Science Foundation of China (61871460, 61876152) and the Foundation Project for Advanced Research Field of China (614023804016HK03002). The authors would like to thank the editors and the anonymous referees for their constructive comments which have been very helpful in revising this paper. We would like also to appreciate Prof. Jonathan C-W for his assistance in English writing and Mr. Bin Lin for his thoughtful suggestions on experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, X., Li, Y. Robust particle tracking via spatio-temporal context learning and multi-task joint local sparse representation. Multimed Tools Appl 78, 21187–21204 (2019). https://doi.org/10.1007/s11042-019-7246-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7246-8

Keywords

Navigation