Skip to main content
Log in

A review of improved extreme learning machine methods for data stream classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Classification is a hotspot in data stream mining and has gained increasing interest from various research fields. Compared with traditional data stream classification methods, Extreme Learning Machine (ELM) has attracted much attention because of its efficiency and simplicity, which inspired the development of many improved ELM algorithms that have been proposed in the past few years. This paper mainly reviews the current state of ELM used to classify data streams and its variants. First, we introduce the principles of ELM and the existing problems of data stream classification. Then we provide an overview of various improvements made to ELM, which further improves its stability, accuracy and generalization ability and present the practical applications of ELM used in data stream classification. Finally, the paper highlights the existing problems of ELM used for data stream mining and development prospects of ELM in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. AI-Behadili H, Grumpet A, Doppt C et al (2015) Extreme Learning Machine based Novelty Detection for Incremental Semi-Supervised Learning. In 2015 Third International Conference on Image Infonnation Processing. IEEE

  2. Alade OA, Selamat A, Sallehuddin R (2017) A review of advances in extreme learning machine techniques and its applications. In International Conference of Reliable Information and Communication Technology:885–895. Springer

  3. Aljawarneh S, Aldwairi M, Yassein MB (2018) Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. Journal of Computational Science 25:152–160. https://doi.org/10.1016/j.jocs.2017.03.006

    Article  Google Scholar 

  4. Atli BG, Miche Y, Kalliola A (2018) Anomaly-based intrusion detection using extreme learning machine and aggregation of network traffic statistics in probability space. Cogn Comput. https://doi.org/10.1007/s12559-018-9564-y

    Article  Google Scholar 

  5. Bloodgood M, Vijay-Shanker K (2009) Taking into account the differences between actively and passively acquired data: The case of active learning with support vector machines for imbalanced datasets. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers. Association for Computational Linguistics, pp 137-140

  6. Bordes A, Ertekin S, Weston J et al (2005) Fast kernel classifiers with online and active learning. J Mach Learn Res 6(Sep):1579–1619

    MathSciNet  MATH  Google Scholar 

  7. Cao J, Lin Z, Huang G-B (2013) Voting base online sequential extreme learning machine for multi-class classification. In Circuits and Systems (ISCAS), 2013 IEEE International Symposium on:2327-2330. IEEE

  8. Cao K, Wang G, Han D et al (2014) Classification of uncertain data streams based on extreme learning machine. Cogn Comput 7(1):150–160. https://doi.org/10.1007/s12559-014-9279-7

    Article  Google Scholar 

  9. Cao J, Zhao Y, Lai X et al (2015) Landmark recognition with sparse representation classification and extreme learning machine. Journal of the Franklin Institute 352(10):4528–4545. https://doi.org/10.1016/j.jfranklin.2015.07.002

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao K, Wang G, Han D et al (2016) An algorithm for classification over uncertain data based on extreme learning machine. Neurocomputing 174:194–202. https://doi.org/10.1016/j.neucom.2015.05.121

    Article  Google Scholar 

  11. Cavalcante RC, I. Oliveira AL (2015) An Approach to Handle Concept Drift in Financial Time Series Based on Extreme Learning Machines and Explicit Drift Detection. In 2015 International Joint Conference on Neural Networks. IEEE

  12. Cucchiara R, Piccard M, Prati A (2003) Detecting moving objects, ghosts and shadows in Vedio streams. IEEE Transaction on Pattern Analysis And Machine Intelligence 25:1337–1342. https://doi.org/10.1109/TPAMI.2003.1233909

    Article  Google Scholar 

  13. Deng W-Y, Ong Y-S, Tan PS et al (2016) Online sequential reduced kernel extreme learning machine. Neurocomputing 174:72–84. https://doi.org/10.1016/j.neucom.2015.06.087

    Article  Google Scholar 

  14. Deng S, Wang B, Huang S et al (2017) Self-adaptive framework for efficient stream data classification on storm. IEEE Transactions on Systems, Man, and Cybernetics: Systems:1–14. https://doi.org/10.1109/tsmc.2017.2757029

  15. Deo RC, Sahin M (2016) An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environ Monit Assess 188(2):90. https://doi.org/10.1007/s10661-016-5094-9

    Article  Google Scholar 

  16. Ding S, Zhao H, Zhang Y et al (2013) Extreme learning machine: algorithm, theory and applications. Artif Intell Rev 44(1):103–115. https://doi.org/10.1007/s10462-013-9405-z

    Article  Google Scholar 

  17. Ding S, Zhang N, Xu X et al (2015) Deep extreme learning machine and its application in EEG classification. Math Probl Eng 2015:1–11. https://doi.org/10.1155/2015/129021

    Article  MathSciNet  MATH  Google Scholar 

  18. Ding S, Mirza B, Lin Z et al (2018) Kernel based online learning for imbalance multiclass classification. Neurocomputing 277:139–148

    Article  Google Scholar 

  19. Ditzler G, Polikar R (2013) Incremental learning of concept drift from streaming imbalanced data. IEEE Trans Knowl Data Eng 25(10):2283–2301. https://doi.org/10.1109/tkde.2012.136

    Article  Google Scholar 

  20. Domingos P, Hulten G (2000) Mining high-speed data streams. In 6th ACM SIGKDD international conference on Knowledge discovery and data mining, 71-80. ACM

  21. B. Dongre P, Malik. LG (2014a) A review on Real Time Data Stream Classification and Adapting To Various Concept Drift Scenarios. In 2014 IEEE International Advance Computing Conference . IEEE

  22. Dongre PB, Malik LG (2014b) A review on real time data stream classification and adapting to various concept drift scenarios. In Advance Computing Conference (IACC), 2014 IEEE International:533-537. IEEE

  23. Duan L, Xu Y, Cui S (2016) Feature Extraction of Motor Imagery EEG Based on Extreme Learning Machine Auto-encoder. In: Proceedings in Adaptation, Learning and Optimization, vol 6. pp 361-370. doi:https://doi.org/10.1007/978-3-319-28397-5_28

    Chapter  Google Scholar 

  24. Duan L, Bao M, Cui S (2017) Motor imagery EEG classification based on kernel hierarchical extreme learning machine. Cogn Comput 9(6):758–765. https://doi.org/10.1007/s12559-017-9494-0

    Article  Google Scholar 

  25. Eirola E, Gritsenko A, Akusok A (2015) Extreme Learning Machines for Multiclass Classification: Refining Predictions with Gaussian Mixture Models. In International Work-Conference on Artificial Neural Networks:153-164. Springer

  26. Fan W, Wang H, Philip SY et al (2003) Is random model better? On its accuracy and efficiency. In Third IEEE International Conference on Data Mining:51. IEEE

  27. Gaber MM, Zaslavsky A, Krishnaswamy S (2007) A survey of classification methods in data streams. In: Data streams. Springer, pp 39-59

  28. Gao J, Ding B, Fan W et al (2008) Classifying data streams with skewed class distributions and concept drifts. IEEE Internet Comput 12(6)

    Article  Google Scholar 

  29. Geoff H, Laurie S, Pedro D (2001) MiningTime-ChangingDataStreams.In 7th ACM SIGKDD international conference on Knowledge discovery and data mining:97-106. ACM

  30. Ghazikhani A, Monsefi R, Yazdi HS (2013) Ensemble of online neural networks for non-stationary and imbalanced data streams. Neurocomputing 122:535–544

    Article  Google Scholar 

  31. Gomes HM, Barddal JP, Enembreck F et al (2017) A survey on ensemble learning for data stream classification. ACM Computing Surveys (CSUR) 50(2):23

    Article  Google Scholar 

  32. Gu Y, Liu J, Chen Y et al (2014) TOSELM: timeliness online sequential extreme learning machine. Neurocomputing 128:119–127. https://doi.org/10.1016/j.neucom.2013.02.047

    Article  Google Scholar 

  33. Guang-Bin H, Qin-Yu Z, Chee-Kheong S (2004a) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE International Joint Conference on Neural Networks. pp 985-990. doi:https://doi.org/10.1109/ijcnn.2004.1380068

  34. Guang-Bin H, Qin-Yu Z, Chee-Kheong S (2004b) Extreme learning machine: a new learning scheme of feedforward neural networks. In 2004 IEEE International Joint Conference on Neural Networks 2:985-990. IEEE

  35. Guo W, Xu T, Tang K et al (2018) Online sequential extreme learning machine with generalized regularization and adaptive forgetting factor for time-varying system prediction. Math Probl Eng 2018:1–22. https://doi.org/10.1155/2018/6195387

    Article  MathSciNet  Google Scholar 

  36. Han D-H, Zhang X, Wang G-R (2015a) Classifying uncertain and evolving data streams with distributed extreme learning machine. J Comput Sci Technol 30(4):874–887. https://doi.org/10.1007/s11390-015-1566-6

    Article  MathSciNet  Google Scholar 

  37. Han D, Giraud-Carrier C, Li S (2015b) Efficient mining of high-speed uncertain data streams. Appl Intell 43(4):773–785. https://doi.org/10.1007/s10489-015-0675-9

    Article  Google Scholar 

  38. Han F, Zhao M-R, Zhang J-M et al (2017) An improved incremental constructive single-hidden-layer feedforward networks for extreme learning machine based on particle swarm optimization. Neurocomputing 228:133–142. https://doi.org/10.1016/j.neucom.2016.09.092

    Article  Google Scholar 

  39. Han D, Li S, Wei F et al (2018) Two birds with one stone: classifying positive and unlabeled examples on uncertain data streams. Neurocomputing 277:149–160. https://doi.org/10.1016/j.neucom.2017.03.094

    Article  Google Scholar 

  40. Homayoun S, Ahmadzadeh M (2016) A review on data stream classification approaches. Journal of Advanced Computer Science & Technology 5(1):8–13

    Article  Google Scholar 

  41. Huang Y (2015) Dynamic cost-sensitive ensemble classification based on extreme learning machine for mining imbalanced massive data streams. International Journal of u- and e-Service, Science and Technology 8(1):333–346. https://doi.org/10.14257/ijunesst.2015.8.1.30

    Article  Google Scholar 

  42. Huang G-B, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16-18):3460–3468. https://doi.org/10.1016/j.neucom.2007.10.008

    Article  Google Scholar 

  43. Huang GB, Saratchandran P, Sundararajan N (2004) An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 34(6):2284–2292. https://doi.org/10.1109/tsmcb.2004.834428

    Article  Google Scholar 

  44. Huang GB, Saratchandran P, Sundararajan N (2005) A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans Neural Netw 16(1):57–67. https://doi.org/10.1109/TNN.2004.836241

    Article  Google Scholar 

  45. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1-3):489–501. https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  46. Huang G-B, Zhou H, Ding X et al (2012) Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42(2):513–529

    Article  Google Scholar 

  47. Huang G, Huang GB, Song S et al (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48. https://doi.org/10.1016/j.neunet.2014.10.001

    Article  MATH  Google Scholar 

  48. Janardan MS (2017) Concept drift in streaming data classification :Algorithms,Platforms and issues. Procedia Computer Science 122:804–811. https://doi.org/10.1016/j.procs.2017.11.440

    Article  Google Scholar 

  49. Junhai Z, Jinggeng W, Xizhao W (2014) Ensemble online sequential extreme learning machine for large data set classification In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE

  50. Kasun LLC, Zhou H, Huang G-B (2013) Representational learning with extreme learning with extreme learning machine for big data. IEEE Intell Syst

  51. Kegelmeyer WP, Hall LO, Bowyer KW et al (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357. https://doi.org/10.1613/jair.953

    Article  MATH  Google Scholar 

  52. Khan I, Huang JZ, Ivanov K (2016) Incremental density-based ensemble clustering over evolving data streams. Neurocomputing 191:34–43. https://doi.org/10.1016/j.neucom.2016.01.009

    Article  Google Scholar 

  53. Kim Y, Toh K-A, Teoh ABJ et al (2013) An online learning network for biometric scores fusion. Neurocomputing 102:65–77

    Article  Google Scholar 

  54. Krawczyk B (2016a) GPU-accelerated extreme learning Machines for Imbalanced Data Streams with concept drift. Procedia Computer Science 80:1692–1701. https://doi.org/10.1016/j.procs.2016.05.509

    Article  Google Scholar 

  55. Krawczyk B (2016b) Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence 5(4):221–232. https://doi.org/10.1007/s13748-016-0094-0

    Article  Google Scholar 

  56. Krawczyk B, Stefanowski J, Wozniak M (2015) Data stream classification and big data analytics. Neurocomputing 150:238–239. https://doi.org/10.1016/j.neucom.2014.10.025

    Article  Google Scholar 

  57. Kuang Y, Wu Q, Shao J et al (2017) Extreme learning machine classification method for lower limb movement recognition. Clust Comput 20(4):3051–3059. https://doi.org/10.1007/s10586-017-0985-2

    Article  Google Scholar 

  58. Kumar S, Pal SK, Singh RP (2018) A novel method based on extreme learning machine to predict heating and cooling load through design and structural attributes. Energy and Buildings 176:275–286. https://doi.org/10.1016/j.enbuild.2018.06.056

    Article  Google Scholar 

  59. Lan Y, Soh YC, Huang G-B (2009) Ensemble of online sequential extreme learning machine. Neurocomputing 72(13-15):3391–3395. https://doi.org/10.1016/j.neucom.2009.02.013

    Article  Google Scholar 

  60. Li P, Wu X, Liang Q et al (2011) Random ensemble decision trees for learning concept-drifting data streams. In Pacific-Asia Conference on Knowledge Discovery and Data Mining:313-325. Springer

  61. Li P, Wu X, Hu X et al (2015) Learning concept-drifting data streams with random ensemble decision trees. Neurocomputing 166:68–83. https://doi.org/10.1016/j.neucom.2015.04.024

    Article  Google Scholar 

  62. Li M, Xiao P, Zhang J (2018a) Text classification based on ensemble extreme learning machine. arXiv preprint arXiv:180506525

  63. Li Y, Qiu R, Jing S (2018b) Intrusion detection system using online sequence extreme learning machine (OS-ELM) in advanced metering infrastructure of smart grid. PLoS One 13(2):e0192216. https://doi.org/10.1371/journal.pone.0192216

    Article  Google Scholar 

  64. Liang NY, Huang GB, Saratchandran P et al (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411–1423. https://doi.org/10.1109/TNN.2006.880583

    Article  Google Scholar 

  65. Lindenbaum M, Markovitch S, Rusakov D (2004) Selective sampling for nearest neighbor classifiers. Mach Learn 54(2):125–152

    Article  Google Scholar 

  66. Liu N, Wang H (2010) Ensemble based extreme learning machine. IEEE Signal Processing Letters 17(7):754

    Google Scholar 

  67. Lu Y, N S PS (1997) A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput:461–478

  68. Luo X, Chang X (2015) A novel data fusion scheme using grey model and extreme learning machine in wireless sensor networks. Int J Control Autom Syst 13(3):539–546. https://doi.org/10.1007/s12555-014-0309-8

    Article  Google Scholar 

  69. Mao W, Wang J, Wang L (2015) Online Sequential Classification of Imbalanced Data by Combining Extreme Learning Machine and improved SMOTE Algorithm. In 2015 International Joint Conference on Neural Networks 1-8. IEEE

  70. Mirza B, Lin Z (2016) Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classification. Neural Netw 80:79–94. https://doi.org/10.1016/j.neunet.2016.04.008

    Article  Google Scholar 

  71. Mirza B, Lin Z, Toh K-A (2013) Weighted online sequential extreme learning machine for class imbalance learning. Neural Process Lett 38(3):465–486. https://doi.org/10.1007/s11063-013-9286-9

    Article  Google Scholar 

  72. Mirza B, Lin Z, Cao J et al (2015a) Voting based weighted online sequential extreme learning machine for imbalance multi-class classification. IEEE International Symposium on Circuits & Systems:565–568. https://doi.org/10.1109/iscas.2015.7168696

  73. Mirza B, Lin Z, Liu N (2015b) Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift. Neurocomputing 149:316–329

    Article  Google Scholar 

  74. Mohammadi K, Shamshirband S, Motamedi S et al (2015) Extreme learning machine based prediction of daily dew point temperature. Comput Electron Agric 117:214–225

    Article  Google Scholar 

  75. Nguyen H-L, Woon Y-K, Ng W-K (2014) A survey on data stream clustering and classification. Knowl Inf Syst 45(3):535–569. https://doi.org/10.1007/s10115-014-0808-1

    Article  Google Scholar 

  76. Ouyang Z, Zhou M, Wang T et al (2009) Mining Concept-Drifting and Noisy Data Streams Using Ensemble Classifiers.360-364. doi:https://doi.org/10.1109/aici.2009.153

  77. Pan S, Wu K, Zhang Y et al (2010a) Classifier Ensemble for Uncertain Data Stream Classification. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. pp 488-495. doi:https://doi.org/10.1007/978-3-642-13657-3_52

    Chapter  Google Scholar 

  78. Pan S, Wu K, Zhang Y et al (2010b) Classifier Ensemble for Uncertain Data Stream Classification. In Pacific-Asia Conference on Knowledge Discovery and Data Mining 6118:488-495. Springer

  79. Platt J (1991) A resource-allocating network for function interpolation. Neural Comput 3(2):213–225. https://doi.org/10.1162/neco.1991.3.2.213

    Article  MathSciNet  Google Scholar 

  80. Polikar R, DePasquale J, Syed Mohammed H et al (2010) Learn++.MF: a random subspace approach for the missing feature problem. Pattern Recogn 43(11):3817–3832. https://doi.org/10.1016/j.patcog.2010.05.028

    Article  MATH  Google Scholar 

  81. Qiu J, Wu Q, Ding G et al (2016) A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing 2016(1). https://doi.org/10.1186/s13634-016-0355-x

  82. Ramírez-Gallego S, Krawczyk B, García S et al (2017) A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing 239:39–57

    Article  Google Scholar 

  83. Roshan S, Miche Y, Akusok A et al (2018) Adaptive and online network intrusion detection system using clustering and extreme learning machines. Journal of the Franklin Institute 355(4):1752–1779. https://doi.org/10.1016/j.jfranklin.2017.06.006

    Article  MathSciNet  MATH  Google Scholar 

  84. Samat A, Du P, Liu S et al (2014) ${{\text E}^{2}}{\text LMs}$: ensemble extreme learning Machines for Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7(4):1060–1069. https://doi.org/10.1109/jstars.2014.2301775

    Article  Google Scholar 

  85. Savitha R, Suresh S, Kim HJ (2013) A meta-cognitive learning algorithm for an extreme learning machine classifier. Cogn Comput 6(2):253–263. https://doi.org/10.1007/s12559-013-9223-2

    Article  Google Scholar 

  86. Scardapane S, Comminiello D, Scarpiniti M et al (2015) Online sequential extreme learning machine with kernels. IEEE transactions on neural networks and learning systems 26(9):2214–2220

    Article  MathSciNet  Google Scholar 

  87. Seliya N, Khoshgoftaar TM (2010) Active learning with neural networks for intrusion detection. In: Information Reuse and Integration (IRI), 2010 IEEE International Conference on. IEEE, pp 49-54

  88. Shamshirband S, Mohammadi K, Tong CW (2015) Application of extreme learning machine for estimation of wind speed distribution. Clim Dyn 46(5-6):1893–1907. https://doi.org/10.1007/s00382-015-2682-2

    Article  Google Scholar 

  89. Shao Z, Er MJ (2016) An online sequential learning algorithm for regularized extreme learning machine. Neurocomputing 173:778–788. https://doi.org/10.1016/j.neucom.2015.08.029

    Article  Google Scholar 

  90. Shukla S, Yadav R (2015) Voting based Extreme learning machine with entropy based ensemble pruning. In Cognitive Computing and Information Processing (CCIP), 2015 International Conference on:1-6. IEEE

  91. Shukla A, Bhandari V, Shrivastava A (2017) Stay one Forget Multiple Extreme Learning Machine with deep Network using time interval process: A review. In 2017 7th International Conference on Communication Systems and Network Technologies (CSNT). IEEE

  92. Sun J, Fu Y, Li S (2018) Sequential Human Activity Recognition based on Deep Convolutional Network and Extreme Learning Machine using Wearable Sensors

  93. Tennant M, Stahl F, Rana O et al (2017) Scalable real-time classification of data streams with concept drift. Futur Gener Comput Syst 75:187–199. https://doi.org/10.1016/j.future.2017.03.026

    Article  Google Scholar 

  94. Tian H-X, Mao Z-Z (2010) An ensemble ELM based on modified AdaBoost. RT algorithm for predicting the temperature of molten steel in ladle furnace. IEEE Trans Autom Sci Eng 7(1):73–80

    Article  Google Scholar 

  95. Tong S, Koller D (2001) Support vector machine active learning with applications to text classification. J Mach Learn Res 2(Nov):45–66

    MATH  Google Scholar 

  96. Wang Z, Crammer K, Vucetic S (2012) Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale svm training. J Mach Learn Res 13:3103–3131

    MathSciNet  MATH  Google Scholar 

  97. Wang G-G, Lu M, Dong Y-Q et al (2015a) Self-adaptive extreme learning machine. Neural Comput & Applic 27(2):291–303. https://doi.org/10.1007/s00521-015-1874-3

    Article  Google Scholar 

  98. Wang Y, Li D, Du Y et al (2015b) Anomaly detection in traffic using L1-norm minimization extreme learning machine. Neurocomputing 149:415–425. https://doi.org/10.1016/j.neucom.2014.04.073

    Article  Google Scholar 

  99. Wang L, Liu H, Sun F (2016) Dynamic texture video classification using extreme learning machine. Neurocomputing 174:278–285. https://doi.org/10.1016/j.neucom.2015.03.114

    Article  Google Scholar 

  100. Wenhua X, Zheng Q, Yang C (2011) A framework for classifying uncertain and evolving data stream. Inf Technol J:1926–1933

  101. Wu D, Wang Z, Chen Y et al (2016) Mixed-kernel based weighted extreme learning machine for inertial sensor based human activity recognition with imbalanced dataset. Neurocomputing 190:35–49. https://doi.org/10.1016/j.neucom.2015.11.095

    Article  Google Scholar 

  102. Xiao W, Zhang J, Li Y et al (2017) Class-specific cost regulation extreme learning machine for imbalanced classification. Neurocomputing 261:70–82. https://doi.org/10.1016/j.neucom.2016.09.120

    Article  Google Scholar 

  103. Xin Y, Fei L, Jingshuai W (2017) Signal Detection of MIMO-OFDM System Based on Auto Encoder and Extreme Learning Machine. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE

  104. Xu Z, Murch RD (2002) Performance analysis of maximum likelihood detection in a MIMO antenna system. IEEE Trans Commun 50(2):187–191. https://doi.org/10.1109/26.983313

    Article  Google Scholar 

  105. Xu S, Wang J (2016) A fast incremental extreme learning machine algorithm for data streams classification. Expert Syst Appl 65:332–344

    Article  Google Scholar 

  106. Xu S, Wang J (2017) Dynamic extreme learning machine for data stream classification. Neurocomputing 238:433–449

    Article  Google Scholar 

  107. Xue X, Yao M, Wu Z et al (2014) Genetic ensemble of extreme learning machine. Neurocomputing 129:175–184

    Article  Google Scholar 

  108. Yadav B, Ch S, Mathur S et al (2016) Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: a case study in Neckar River, Germany. Measurement 92:433–445. https://doi.org/10.1016/j.measurement.2016.06.042

    Article  Google Scholar 

  109. Yang R, Xu S, Feng L (2018) An ensemble extreme learning machine for data stream classification. Algorithms 11(7):107. https://doi.org/10.3390/a11070107

    Article  MathSciNet  Google Scholar 

  110. Yu CH, Choi JW (2014) Interacting multiple model filter-based distributed target tracking algorithm in underwater wireless sensor networks. Int J Control Autom Syst 12(3):618–627. https://doi.org/10.1007/s12555-013-0238-y

    Article  Google Scholar 

  111. Yu H, Sun C, Yang W et al (2015) AL-ELM: one uncertainty-based active learning algorithm using extreme learning machine. Neurocomputing 166:140–150. https://doi.org/10.1016/j.neucom.2015.04.019

    Article  Google Scholar 

  112. Yu H, Yang X, Zheng S et al (2018) Active learning from imbalanced data: a solution of online weighted extreme learning machine. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2018.2855446

    Article  Google Scholar 

  113. Zhai J-h, H-y X, X-z W (2012) Dynamic ensemble extreme learning machine based on sample entropy. Soft Comput 16(9):1493–1502. https://doi.org/10.1007/s00500-012-0824-6

    Article  Google Scholar 

  114. Zhang P, Zhu X, Shi Y et al (2009) An aggregate ensemble for mining concept drifting data streams with noise. In Pacific-Asia Conference on Knowledge Discovery and Data Mining:1021-1029. Springer

  115. Zhang Y, Liu W, Ren X et al (2017) Dual weighted extreme learning machine for imbalanced data stream classification. Journal of Intelligent & Fuzzy Systems 33(2):1143–1154

    Article  Google Scholar 

  116. Zhao J, Wang Z, Park DS (2012) Online sequential extreme learning machine with forgetting mechanism. Neurocomputing 87:79–89. https://doi.org/10.1016/j.neucom.2012.02.003

    Article  Google Scholar 

  117. Zhenyu C, Shuangquan W, Zhiqi S (2013) Online Sequential ELM based Transfer Learning for Transportation Mode Recognition. In 2013 IEEE Conference on Cybernetics and Intelligent Systems (CIS). IEEE

  118. Zhiyuan M, Guangchun L, Huang D (2016) Short Term Traffic Flow Prediction Based on Online Sequential Extreme Learning Machine. In 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI). IEEE

  119. Zhou W, Ji C, Mou J et al (2013) Adaptive target synchronization for wireless sensor networks with Markov delays and noise perturbation. Int J Control Autom Syst 11(5):919–925. https://doi.org/10.1007/s12555-012-9511-8

    Article  Google Scholar 

  120. Zhu J, Hovy E (2007) Active learning for word sense disambiguation with methods for addressing the class imbalance problem. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)

  121. Zong W, Huang G-B, Chen Y (2013) Weighted extreme learning machine for imbalance learning. Neurocomputing 101:229–242. https://doi.org/10.1016/j.neucom.2012.08.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruizhi Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Sun, R., Cai, S. et al. A review of improved extreme learning machine methods for data stream classification. Multimed Tools Appl 78, 33375–33400 (2019). https://doi.org/10.1007/s11042-019-7543-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7543-2

Keywords

Navigation