Skip to main content

Advertisement

Log in

A mixed noise removal algorithm based on multi-fidelity modeling with nonsmooth and nonconvex regularization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this article, we propose a mixed-noise removal model which incorporates with a nonsmooth and nonconvex regularizer. To solve this model, a multistage convex relaxation method is used to deal with the optimization problem due to the nonconvex regularizer. Besides, we adopt the number of iteration steps as the termination condition of the proposed algorithm and select the optimal parameters for the model by a genetic algorithm. Several experiments on classic images with different level noises indicate that the robustness, running time, ISNR (Improvement in Signalto-Noise ratio) and PSNR (Peak Signal to Noise Ratio) of our model are better than those of other three models, and the proposed model can retain the local information of the image to obtain the optimal quantitative metrics and visual quality of the restored images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alliney S (1997) A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans Signal Process 45(4):913–917

    Article  Google Scholar 

  2. Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations, vol. 147. Springer Science & Business Media

  3. Aubert G, Aujol J-F (2008) A variational approach to removing multiplicative noise. SIAM J Appl Math 68(4):925–946

    Article  MathSciNet  MATH  Google Scholar 

  4. Bar L, Chan TF, Chung G, Jung M, Kiryati N, Mohieddine R, Sochen N, Vese LA (2011) Mumford and shah model and its applications to image segmentation andimage restoration. In: Handbook of mathematical methods in imaging. Springer, pp 1095–1157

  5. Blake A, Zisserman A (1987) Visual reconstruction. MIT Press, Cambridge

    Book  Google Scholar 

  6. Bovik AC (2010) Handbook of image and video processing. Academic, New York

    MATH  Google Scholar 

  7. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J et al (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends®; Machine Learn 3(1):1– 122

    Article  MATH  Google Scholar 

  8. Buades A, Coll B, Morel J-M (2005) A non-local algorithm for image denoising. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005, vol 2. IEEE, pp 60–65

  9. Buades A, Coll B, Morel J-M (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4(2):490–530

    Article  MathSciNet  MATH  Google Scholar 

  10. Burger HC, Schuler CJ, Harmeling S (2012) Image denoising: can plain neural networks compete with bm3d?. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2392–2399

  11. Cai J-F, Chan RH, Nikolova M (2008) Two-phase approach for deblurring images corrupted by impulse plus gaussian noise. Inverse Probl Imaging 2(2):187–204

    Article  MathSciNet  MATH  Google Scholar 

  12. Cai X, Chan R, Zeng T (2013) A two-stage image segmentation method using a convex variant of the mumford–shah model and thresholding. SIAM J Imag Sci 6(1):368–390

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan TF, Esedoglu S (2005) Aspects of total variation regularized l 1 function approximation. J SIAM Appl Math 65(5):1817–1837

    Article  MathSciNet  MATH  Google Scholar 

  14. Charbonnier P, Blanc-Féraud L, Aubert G, Barlaud M (1997) Deterministic edge-preserving regularization in computed imaging. IEEE Trans Image Process 6 (2):298–311

    Article  Google Scholar 

  15. Chartrand R, Yin W (2008) Iterative reweighted algorithms for compressive sensing. Tech. Rep.

  16. Chen Y, Pock T (2017) Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans Pattern Anal Mach Intell 39 (6):1256–1272

    Article  Google Scholar 

  17. Chen Y, Yu W, Pock T (2015) On learning optimized reaction diffusion processes for effective image restoration. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5261–5269

  18. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

    Article  MathSciNet  Google Scholar 

  19. Daubechies I, DeVore R, Fornasier M, Güntürk CS (2010) Iteratively reweighted least squares minimization for sparse recovery. Commun Pure Appl Math: A Journal Issued by the Courant Institute of Mathematical Sciences 63(1):1–38

    Article  MathSciNet  MATH  Google Scholar 

  20. Deng L, Zhu H, Li Y, Yang Z (2018) A low-rank tensor model for hyperspectral image sparse noise removal. IEEE Access 6:62120–62127

    Article  Google Scholar 

  21. Dong W, Li X, Zhang L, Shi G (2011) Sparsity-based image denoising via dictionary learning and structural clustering. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 457–464

  22. Dong W, Shi G, Li X (2013) Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans Image Process 22(2):700–711

    Article  MathSciNet  MATH  Google Scholar 

  23. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630

    Article  MathSciNet  MATH  Google Scholar 

  24. Dong W, Shi G, Li X, Ma Y, Huang F (2014) Compressive sensing via nonlocal low-rank regularization. IEEE Trans Image Process 23(8):3618–3632

    Article  MathSciNet  MATH  Google Scholar 

  25. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  26. Esser E (2009) Applications of lagrangian-based alternating direction methods and connections to split bregman. CAM Report 9:31

    Google Scholar 

  27. Feng W, Qiao P, Chen Y (2018) Fast and accurate poisson denoising with trainable nonlinear diffusion. IEEE Trans Cybern 48(6):1708–1719

    Article  Google Scholar 

  28. Figueiredo MA, Bioucas-Dias JM (2010) Restoration of poissonian images using alternating direction optimization. IEEE Trans Image Process 19(12):3133–3145

    Article  MathSciNet  MATH  Google Scholar 

  29. Garnett R, Huegerich T, Chui C, He W (2005) A universal noise removal algorithm with an impulse detector. IEEE Trans Image Process 14(11):1747–1754

    Article  Google Scholar 

  30. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  31. Geman D, Reynolds G (1992) Constrained restoration and the recovery of discontinuities. IEEE Trans Pattern Anal Mach Intell 3:367–383

    Article  Google Scholar 

  32. Geman D, Yang C (1995) Nonlinear image recovery with half-quadratic regularization. IEEE Trans Image Process 4(7):932–946

    Article  Google Scholar 

  33. Goldstein T, Osher S (2009) The split bregman method for l1-regularized problems. SIAM J Imag Sci 2(2):323–343

    Article  MathSciNet  MATH  Google Scholar 

  34. Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2862–2869

  35. Han Y, Feng X-C, Baciu G, Wang W-W (2013) Nonconvex sparse regularizer based speckle noise removal. Pattern Recognit 46(3):989–1001

    Article  Google Scholar 

  36. He B, Liao L-Z, Han D, Yang H (2002) A new inexact alternating directions method for monotone variational inequalities. Math Program 92(1):103–118

    Article  MathSciNet  MATH  Google Scholar 

  37. He K, Wang R, Tao D, Cheng J, Liu W (2018) Color transfer pulse-coupled neural networks for underwater robotic visual systems. IEEE Access 6:32850–32860

    Article  Google Scholar 

  38. Hintermüller M, Langer A (2012) Subspace correction methods for a class of non-smooth and non-additive convex variational problems in image processing

  39. Huang T, Dong W, Xie X, Shi G, Bai X (2017) Mixed noise removal via laplacian scale mixture modeling and nonlocal low-rank approximation. IEEE Trans Image Process 26(7):3171–3186

    Article  MathSciNet  MATH  Google Scholar 

  40. Jain V, Seung S (2009) Natural image denoising with convolutional networks. In: Advances in neural information processing systems, pp 769–776

  41. Ji H, Huang S, Shen Z, Xu Y (2011) Robust video restoration by joint sparse and low rank matrix approximation. SIAM J Imag Sci 4(4):1122–1142

    Article  MathSciNet  MATH  Google Scholar 

  42. Ji H, Liu C, Shen Z, Xu Y (2010) Robust video denoising using low rank matrix completion

  43. Jia T, Shi Y, Zhu Y, Wang L (2016) An image restoration model combining mixed L1/L2 fidelity terms. J Vis Commun Image Represent 38:461–473

    Article  Google Scholar 

  44. Jiang J, Zhang L, Yang J (2014) Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Trans Image Process 23(6):2651–2662

    Article  MathSciNet  MATH  Google Scholar 

  45. Jung M, Kang M (2015) Efficient nonsmooth nonconvex optimization for image restoration and segmentation. J Sci Comput 62(2):336–370

    Article  MathSciNet  MATH  Google Scholar 

  46. Li SZ (1994) Markov random field models in computer vision. In: European conference on computer vision. Springer, pp 361–370

  47. Liu L, Chen L, Chen CP, Tang YY et al (2017) Weighted joint sparse representation for removing mixed noise in image. IEEE Trans Cybern 47(3):600–611

    Article  Google Scholar 

  48. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Non-local sparse models for image restoration. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 2272–2279

  49. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685

    Article  MathSciNet  MATH  Google Scholar 

  50. Nikolova M (1999) Markovian reconstruction using a gnc approach. IEEE Trans Image Process 8(9):1204–1220

    Article  Google Scholar 

  51. Nikolova M (2002) Minimizers of cost-functions involving nonsmooth data-fidelity terms. application to the processing of outliers. SIAM J Numer Anal 40(3):965–994

    Article  MathSciNet  MATH  Google Scholar 

  52. Nikolova M (2004) A variational approach to remove outliers and impulse noise. J Math Imaging Vision 20(1–2):99–120

    Article  MathSciNet  MATH  Google Scholar 

  53. Nikolova M (2005) Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model Simul 4(3):960–991

    Article  MathSciNet  MATH  Google Scholar 

  54. Nikolova M, Chan RH (2007) The equivalence of half-quadratic minimization and the gradient linearization iteration. IEEE Trans Image Process 16(6):1623–1627

    Article  MathSciNet  Google Scholar 

  55. Nikolova M, Ng MK, Zhang S, Ching W-K (2008) Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J Imag Sci 1(1):2–25

    Article  MathSciNet  MATH  Google Scholar 

  56. Nikolova M, Ng MK, Tam C-P (2010) Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Trans Image Process 19 (12):3073–3088

    Article  MathSciNet  MATH  Google Scholar 

  57. Ochs P, Dosovitskiy A, Brox T, Pock T (2013) An iterated l1 algorithm for non-smooth non-convex optimization in computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1759–1766

  58. Osher S, Shi Z, Zhu W (2017) Low dimensional manifold model for image processing. SIAM J Imag Sci 10(4):1669–1690

    Article  MathSciNet  MATH  Google Scholar 

  59. Robini MC, Lachal A, Magnin IE (2007) A stochastic continuation approach to piecewise constant reconstruction. IEEE Trans Image Process 16(10):2576–2589

    Article  MathSciNet  Google Scholar 

  60. Rockafellar R (1997) Convex analysis, Princeton University Press, Princeton, 1970. MATH Google Scholar

  61. Roth S, Black MJ (2009) Fields of experts. Int J Comput Vis 82(2):205–229

    Article  Google Scholar 

  62. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1–4):259–268

    Article  MathSciNet  MATH  Google Scholar 

  63. Shao L, Yan R, Li X, Liu Y (2014) From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms. IEEE Trans Cybern 44(7):1001–1013

    Article  Google Scholar 

  64. Tao D, Cheng J, Song M, Lin X (2016) Manifold ranking-based matrix factorization for saliency detection. IEEE Trans Neural Netw Learn Syst 27(6):1122–1134

    Article  MathSciNet  Google Scholar 

  65. Teboul S, Blanc-Feraud L, Aubert G, Barlaud M (1998) Variational approach for edge-preserving regularization using coupled pdes. IEEE Trans Image Process 7(3):387–397

    Article  Google Scholar 

  66. Vogel CR, Oman ME (1998) Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans Image Process 7(6):813–824

    Article  MathSciNet  MATH  Google Scholar 

  67. Wang Y, Yang J, Yin W, Zhang Y (2008) A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imag Sci 1(3):248–272

    Article  MathSciNet  MATH  Google Scholar 

  68. Xiao Y, Zeng T, Yu J, Ng MK (2011) Restoration of images corrupted by mixed gaussian-impulse noise via l1–l0 minimization. Pattern Recognit 44(8):1708–1720

    Article  MATH  Google Scholar 

  69. Xie J, Xu L, Chen E (2012) Image denoising and inpainting with deep neural networks. In: Advances in neural information processing systems, pp 341–349

  70. Yan M (2013) Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting. SIAM J Imag Sci 6(3):1227–1245

    Article  MathSciNet  MATH  Google Scholar 

  71. Yan R, Shao L, Liu Y (2013) Nonlocal hierarchical dictionary learning using wavelets for image denoising. IEEE Trans Image Process 22(12):4689–4698

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhang T (2010) Analysis of multi-stage convex relaxation for sparse regularization. J Mach Learn Res 11:1081–1107

    MathSciNet  MATH  Google Scholar 

  73. Zhang X, Lu Y, Chan T (2012) A novel sparsity reconstruction method from poisson data for 3d bioluminescence tomography. J Sci Comput 50(3):519–535

    Article  MathSciNet  MATH  Google Scholar 

  74. Zhang H, Yang J, Zhang Y, Huang TS (2013) Image and video restorations via nonlocal kernel regression. IEEE Trans Cybern 43(3):1035–1046

    Article  Google Scholar 

  75. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans Image Process 26(7):3142–3155

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Funding were provided by the Natural Science Foundation of China under Grant NO.61361126011, No. 90912006; the Special Project of Informatization of Chinese Academy of Sciences in “the Twelfth Five-Year Plan” under Grant No. XXH12504-1-06, Science and Technology Service Network Initiative, CAS, (STS Plan); he IT integrated service platform of Sichuan Wolong Natural Reserve, under Grant No. Y82E01; The National R&D Infrastructure and Facility Development Program of China, “Fundamental Science Data Sharing Platform” (DKA2018-12-02-XX); Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA19060205; the Special Project of Informatization of Chinese Academy of Sciences (XXH13505-03-205); the Special Project of Informatization of Chinese Academy of Sciences (XXH13506-305); the Special Project of Informatization of Chinese Academy of Sciences (XXH13506-303); Supported by Around Five Top Priorities of “One-Three-Five” Strategic Planning, CNIC(Grant No. CNIC_PY-1408); Supported by Around Five Top Priorities of “One-Three-Five” Strategic Planning, CNIC(Grant No. CNIC_PY-1409) The authors wish to gratefully thank all anoymous reriewers who provided insightful and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, Y., Zhao, Z. et al. A mixed noise removal algorithm based on multi-fidelity modeling with nonsmooth and nonconvex regularization. Multimed Tools Appl 78, 23117–23140 (2019). https://doi.org/10.1007/s11042-019-7625-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7625-1

Keywords

Navigation