Skip to main content

Advertisement

Log in

Multi-view feature learning for VHR remote sensing image classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Learning high-level semantic information is important for the task of remote sensing(RS) image scene classification. Due to the great intraclass diversities and the interclass similarities, many researchers have explored the convolutional neural network(CNN) to handle this task recently. However, RS images usually have confusing backgrounds, such as the relevant objects, and features only derived from the whole RS images can not achieve satisfying results. Additionally, the great intraclass diversities also increase the difficulty of recognizing the RS images correctly. To solve the problem, the multi-view feature learning network(MVFLN) is proposed to obtain three domain-specific features for the scene categorization task. FC layers in the VGGNet are replaced by the channel-spatial branch and the other multiple metric branchs. The channel-spatial branch is utilized to localize and learn discriminative regions while the triplet metric branch and the center metric branch are used to enlarge the distance between different classes and reduce the distance of samples belonging to the same class, respectively. In this situation, the proposed MVFLN conducts in a concise way without extra SVM classifiers, achieving better performance. Experiments conducted on the AID, NWPU-RESISC45 and UC Merced datasets evaluate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chaib S, Liu H, Gu Y, Yao H (2017) Deep feature fusion for vhr remote sensing scene classification. IEEE Trans Geosci Remote Sens 55(8):4775–4784

    Article  Google Scholar 

  2. Chen C, Zhang B, Su H, Li W, Wang L (2016) Land-use scene classification using multi-scale completed local binary patterns. Signal Image Video Process 10 (4):745–752

    Article  Google Scholar 

  3. Cheng G, Han J, Guo L, Liu T (2015) Learning coarse-to-fine sparselets for efficient object detection and scene classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1173–1181

  4. Cheng G, Han J, Guo L, Liu Z, Bu S, Ren J (2015) Effective and efficient midlevel visual elements-oriented land-use classification using vhr remote sensing images. IEEE Trans Geosci Remote Sens 53(8):4238–4249

    Article  Google Scholar 

  5. Cheng G, Han J, Zhou P, Guo L (2014) Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J Photogramm Remote Sens 98:119–132

    Article  Google Scholar 

  6. Cheng G, Li Z, Yao X, Guo L, Wei Z (2017) Remote sensing image scene classification using bag of convolutional features. IEEE Geosci Remote Sens Lett 14(10):1735–1739

    Article  Google Scholar 

  7. Cheng G, Yang C, Yao X, Guo L, Han J (2018) When deep learning meets metric learning: remote sensing image scene classification via learning discriminative cnns. IEEE Trans Geosci Remote Sens 56(5):2811–2821

    Article  Google Scholar 

  8. Cheng G, Zhou P, Han J (2016) Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images. IEEE Trans Geosci Remote Sens 54(12):7405–7415

    Article  Google Scholar 

  9. Cheng G, Zhou P, Han J, Guo L, Han J (2015) Auto-encoder-based shared mid-level visual dictionary learning for scene classification using very high resolution remote sensing images. IET Comput Vis 9(5):639–647

    Article  Google Scholar 

  10. Girshick R, Donahue J, Darrell T, Malik J (2016) Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans Pattern Anal Mach Intell 38(1):142–158

    Article  Google Scholar 

  11. Guo Y, Ji J, Lu X, Huo H, Fang T, Li D (2019) Global-local attention network for aerial scene classification. IEEE Access

  12. He N, Fang L, Li S, Plaza A, Plaza J (2018) Remote sensing scene classification using multilayer stacked covariance pooling. IEEE Trans Geosci Remote Sens 56(12):6899–6910

    Article  Google Scholar 

  13. Hu F, Xia GS, Hu J, Zhang L (2015) Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens 7(11):14680–14707

    Article  Google Scholar 

  14. Huang L, Chen C, Li W, Du Q (2016) Remote sensing image scene classification using multi-scale completed local binary patterns and fisher vectors. Remote Sens 8(6):483

    Article  Google Scholar 

  15. Ji J, Jiang L, Lei C, Zhong W, Xiong H (2018) Learning two-level features for fine-grained image classification. In: 2018 14th IEEE international conference on signal processing (ICSP). IEEE, pp 544–549

  16. Jia Y, Huang C, Darrell T (2012) Beyond spatial pyramids: receptive field learning for pooled image features. In: CVPR. IEEE, pp 3370–3377

  17. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  18. Li E, Xia J, Du P, Lin C, Samat A (2017) Integrating multilayer features of convolutional neural networks for remote sensing scene classification. IEEE Trans Geosci Remote Sens 55(10):5653–5665

    Article  Google Scholar 

  19. Lin M, Chen Q, Yan S (2013) Network in network. arXiv:1312.4400

  20. Liu Y, Liu Y, Ding L (2018) Scene classification based on two-stage deep feature fusion. IEEE Geosci Remote Sens Lett 15(2):183–186

    Article  Google Scholar 

  21. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  22. Lu X, Guo Y, Liu N, Wan L, Fang T (2018) Non-convex joint bilateral guided depth upsampling. Multimed Tools Appl 77(12):15521–15544

    Article  Google Scholar 

  23. Lu X, Li X, Mou L (2014) Semi-supervised multitask learning for scene recognition. IEEE Trans Cybern 45(9):1967–1976

    Google Scholar 

  24. Lu X, Ma C, Ni B, Yang X (2019) Adaptive region proposal with channel regularization for robust object tracking. IEEE Trans Circ Sys Video Technol 10(19):1–15

    Google Scholar 

  25. Lu X, Ma C, Ni B, Yang X, Reid I, Yang MH (2018) Deep regression tracking with shrinkage loss. In: Proceedings of the European conference on computer vision (ECCV), pp 353–369

  26. Lu X, Ni B, Ma C, Yang X (2019) Learning transform-aware attentive network for object tracking. Neurocomputing 349:133–144

    Article  Google Scholar 

  27. Lu X, Wang W, Ma C, Shen J, Shao L, Porikli F (2019) See more, know more: unsupervised video object segmentation with co-attention siamese networks. In: The IEEE conference on computer vision and pattern recognition (CVPR)

  28. Lu X, Wang W, Ma C, Shen J, Shao L, Porikli F (2019) See more, know more: unsupervised video object segmentation with co-attention siamese networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3623–3632

  29. Luus FP, Salmon BP, Van den Bergh F, Maharaj BTJ (2015) Multiview deep learning for land-use classification. IEEE Geosci Remote Sens Lett 12(12):2448–2452

    Article  Google Scholar 

  30. Nogueira K, Penatti OA, dos Santos JA (2017) Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn 61:539–556

    Article  Google Scholar 

  31. Othman E, Bazi Y, Melgani F, Alhichri H, Alajlan N, Zuair M (2017) Domain adaptation network for cross-scene classification. IEEE Trans Geosci Remote Sens 55(8):4441–4456

    Article  Google Scholar 

  32. Penatti OA, Nogueira K, dos Santos JA (2015) Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?. In: CVPR workshops, pp 44–51

  33. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. Int Conf Learn Represent

  34. Wang G, Fan B, Xiang S, Pan C (2017) Aggregating rich hierarchical features for scene classification in remote sensing imagery. IEEE J Select Topics Appl Earth Observ Remote Sens 10(9):4104–4115

    Article  Google Scholar 

  35. Wang Q, Liu S, Chanussot J, Li X (2018) Scene classification with recurrent attention of vhr remote sensing images. IEEE Trans Geosci Remote Sens (99):1–13

  36. Wang W, Lu X, Shen J, Crandall DJ, Shao L (2019) Zero-shot video object segmentation via attentive graph neural networks. In: Proceedings of the IEEE international conference on computer vision, pp 9236–9245

  37. Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: European conference on computer vision. Springer, pp 499–515

  38. Woo S, Park J, Lee JY, So Kweon I (2018) Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19

  39. Xia GS, Hu J, Hu F, Shi B, Bai X, Zhong Y, Zhang L, Lu X (2017) Aid: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans Geosci Remote Sens 55(7):3965–3981

    Article  Google Scholar 

  40. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 270–279

  41. Yao X, Han J, Cheng G, Qian X, Guo L (2016) Semantic annotation of high-resolution satellite images via weakly supervised learning. IEEE Trans Geosci Remote Sens 54(6):3660–3671

    Article  Google Scholar 

  42. Zhang F, Du B, Zhang L (2015) Scene classification via a gradient boosting random convolutional network framework. IEEE Trans Geosci Remote Sens 54(3):1793–1802

    Article  Google Scholar 

  43. Zhao B, Wu X, Feng J, Peng Q, Yan S (2017) Diversified visual attention networks for fine-grained object classification. IEEE Trans Multimed 19(6):1245–1256

    Article  Google Scholar 

  44. Zhao B, Zhong Y, Xia GS, Zhang L (2016) Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery. IEEE Trans Geosci Remote Sens 54(4):2108–2123

    Article  Google Scholar 

  45. Zhao W, Du S (2016) Scene classification using multi-scale deeply described visual words. Int J Remote Sens 37(17):4119–4131

    Article  Google Scholar 

  46. Zou J, Li W, Chen C, Du Q (2016) Scene classification using local and global features with collaborative representation fusion. Inf Sci 348:209–226

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was supported by the National Key Research and Development Program of China under grant 2018YFB0505400, the National Natural Science Foundation of China under grants 41822106, the Dawn Scholar of Shanghai Program under grant 18SG22, the State Key Laboratory of Disaster Reduction in Civil Engineering under grant SLDRCE19-B-35, and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Xie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Ji, J., Shi, D. et al. Multi-view feature learning for VHR remote sensing image classification. Multimed Tools Appl 80, 23009–23021 (2021). https://doi.org/10.1007/s11042-020-08713-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08713-z

Keywords

Navigation