Skip to main content
Log in

An efficient proposed framework for infrared night vision imaging system

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This research presents new three proposed approaches to enhancement the visibility of the Infrared (IR) night vision images. The first proposed approach depends on Hybrid Adaptive Gamma Correction (AGC) with Histogram Matching (HGCHM). The second proposed approach stands up Merging Gamma Correction with Contrast Limited Adaptive Histogram Equalization (MGCCLAHE). The HM uses a reference visual image for converting of night vision images into daytime images. The third approach mixes the benefits of the CLAHE with the undecimated Additive Wavelet Transform (AWT) Using Homomorphic processing (CSAWUH). The quality assessments for the suggested approaches are entropy, average gradient, contrast improvement factor, Sobel edge magnitude, spectral entropy, lightness order error and the similarity of edges. Simulation results clear that the third proposed approach gives superior results to the two proposed approaches from entropy, average gradient, contrast improvement factor, Sobel edge magnitude, spectral entropy and the computation time perspectives. On the other hand, the second proposed approach takes long computation time in the implementation with respect to the two proposed approaches. The second proposed approach gives better results to the first proposed approach entropy, average gradient, contrast improvement factor, Sobel edge magnitude, and spectral entropy perspectives. The first proposed approach gives better results to the two proposed approaches from lightness order error and the similarity of edges perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Ashiba HI, Mansour HM, Ahmed HM, El-Kordy MF, Dessouky MI, El-Samie FEA (2018) Enhancement of infrared images based on efficient histogram processing. Wirel Pers Commun 99(2):619–636

    Article  Google Scholar 

  2. Ashiba HI, Mansour HM, Ahmed HM, El-Kordy MF, Dessouky MI, Zahran O, El-Samie FEA (2019) Enhancement of IR images using histogram processing and the Undecimated additive wavelet transform. Multimed Tools Appl 78(9):11277–11290

    Article  Google Scholar 

  3. Dey N (2019) Uneven illumination correction of digital images: A survey of the state-of-the-art. Optik – Int J Light Electron Opt 183:483–495

    Article  Google Scholar 

  4. Gonzalez R, Wood R (2009) Digital image processing, (3rd ed), Pearson Education

  5. Grag R, Mittal B, Grag S (2011) Histogram equalization techniques for image enhancement. Int J Electron Commun Technol 107–111

  6. Gu K, Tao D, Qiao J, Lin W (2019) Learning a no-reference quality assessment model of enhanced images with big data. arXiv:1904.08632v1 [cs.CV]

  7. Gupta B, Tiwari M (2016) Minimum mean brightness error contrast enhancement of color images using adaptive gamma correction with color preserving framework. Optik 127(4):1671–1676

    Article  Google Scholar 

  8. Helakari H, Kananen J, Huotari N, Raitamaa L, Tuovinen T, Borchardt V, Rasila A, Raatikainen V, Starck T, Hautaniemi T, Myllyla T, Tervonen O, Rytky S, Keinanen T, Korhonen V, Kiviniemi V, Ansakorpi H (2019) Spectral entropy indicates electrophysiological and hemodynamic changes in drug-resistant epilepsy – A multimodal MREG study. NeuroImage Clin 22:101763

    Article  Google Scholar 

  9. Hel-Or Y., Hel-Or H, David E (2011) Fast template matching in non-linear tone-mapped images. Int Conf Comput Vis IEEE, pp. 1355–1362

  10. Hollnagel E, Karlsson J, Magnusson T, Taube U (2001) They drive at night – can visual enhancement systems keep the driver in control. Proceedings of Driving Assessment, Snowmass, CO., August 14–17

  11. Li S, Jin W, Wang X, Li L, Liu M (2018) “Contrast enhancement algorithm for outdoor infrared images based on local gradient-grayscale statistical feature”, IEEE Access, https://doi.org/10.1109/ACCESS.2018.2873743

  12. Li Y, Liu N, Xu J, Wu J (2019) Detail enhancement of infrared image based on bi-exponential edge preserving smoother. Optik – Int J Light Electron Opt 199:163300

    Article  Google Scholar 

  13. Liang Y, Huang H, Cai Z, Hao Z, Tan KC (2019) Deep infrared pedestrian classification based on automatic image Matting. Appl Soft Comput J 77:484–496

    Article  Google Scholar 

  14. Miezianko R (2005) "Terravic research infrared database,” In: Proc IEEE OTCBVS WS Series Bench. Available: http://vciplokstate.org/pbvs/bench/

  15. Nicolini C, Forcellini G, Minati L, Bifone A (2020) Scale-resolved analysis of brain functional connectivity networks with spectral entropy. NeuroImage 211:116603

    Article  Google Scholar 

  16. Pratt KW (1991) Digital Image Processing, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  17. Qiu S, Luo J, Yang S, Zhang M, Zhang W (2019) A moving target extraction algorithm based on the fusion of infrared and visible images. Infrared Phys Technol 98:285–291

    Article  Google Scholar 

  18. Rabin J, Wiley R (1994) Switching from forward-looking infrared to night-vision goggles: transitory effects on visual resolution. Aviat Space Environ Med 65:327–329

    Google Scholar 

  19. Renukalatha S, Suresh VK (2016) Brain Tumor analysis of Rician noise affected MRI images. Int J Comput Appl 141(14):0975–8887

    Google Scholar 

  20. Rolland PJ, Vo V, Bloss B, Abbey KC (2000) Fast algorithms for histogram matching: application to texture synthesis. J Electron Imaging 9(1):39–45

    Article  Google Scholar 

  21. Shome KS, Vadali KRS (2011) Enhancement of diabetic retinopathy imagery using contrast limited adaptive histogram equalization. Int J Comput Sci Inf Technol 2(6):2694–2699

    Google Scholar 

  22. Stark AJ (2000) Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans Image Process 9(5):889–894

    Article  Google Scholar 

  23. Waran DP, Subramaniyam NP, Thiagarajan TC (2019) Waveform complexity: A new metric for EEG analysis. J Neurosci Methods 325:108313

    Article  Google Scholar 

  24. Yoo JH, Ohm SY, Chung MG (2012) Maximum-entropy image enhancement using brightness mean and variance. J Korean Soc Internet Inf 13(3):61–73

    Google Scholar 

  25. Yu X (2017) Fuzzy infrared image segmentation based on multilayer immune clustering neural network. Optik – Int J Light Electron Optics. https://doi.org/10.1016/j.ijleo.2017.05.012

  26. Yu T-H, Moon Y-S (2009) An intelligent night vision system for automobiles. MVA IAPR Conference On Machine Vision Application, May 20–22, Yokohama, Japan

  27. Zhang H, Yuan B, Dong B, Jiang Z (2018) No-reference blurred image quality assessment by structural similarity index. Appl Sci 8:2003

    Article  Google Scholar 

  28. Zhiming W, Jianhua T (2006) A fast implementation of adaptive histogram equalization, IEEE, ICSP Proceedings

  29. Zhou D, Qiu S, Yang S, Xia K (2020) A pedestrian extraction algorithm based on single infrared image. Infrared Phys Technol. https://doi.org/10.1016/j.infrared.2020.103236

  30. Zhu P, Ma X, Huang Z (2017) Fusion of infrared-visible images using improved multi-scale top-hat transform and suitable fusion rules. Infrared Phys Technol 81:282–295. https://doi.org/10.1016/j.infrared.2017.01.013

    Article  Google Scholar 

  31. Zimmerman J, Pizer S, Staab E, Perry E, McCartney W, Brenton B (1988) Evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans Med Imaging 304–312

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. I. Ashiba.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashiba, M.I., Ashiba, H.I., Tolba, M.S. et al. An efficient proposed framework for infrared night vision imaging system. Multimed Tools Appl 79, 23111–23146 (2020). https://doi.org/10.1007/s11042-020-09039-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09039-6

Keywords

Navigation