Skip to main content
Log in

Salient object detection via effective background prior and novel graph

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Salient object detection is getting more and more attention in computer vision field. In this paper, we propose a novel and effective framework for salient object detection. Firstly, we develop a robust background-based map by using spatial prior to remove the foreground noises of image boundary regions. The proposed background-based map and Objectness map are integrated to obtain a coarse saliency map. Then, an effective saliency propagation mechanism is utilized to further highlight salient object and suppress background region by defining a novel graph model, each node connects to its more similar neighbors and nodes with low saliency values in the proposed graph. As a result, the coarse saliency map is optimized to the refined saliency map by novel graph based saliency propagation. Finally, we construct a novel integration framework to further integrate two saliency maps for performance improvement. Experiments on three benchmark datasets are tested, experimental results show the superiority of the proposed algorithm than other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection, CVPR 1597–1604

  2. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S. Slic superpixels, Ecole Polytechnique Federal de Lausssanne, Technical Report

  3. Alexe B, Deselaers T, Ferrari V (2012) Measuring the objectness of image windows, IEEE trans. Patt Anal Mach Intell 34(11):2189–2202

  4. Chen S, Zheng L, Lu X, Zhou P (2016) Discriminative saliency propagation with sink points. Pattern Recogn 60:2–12

    Article  Google Scholar 

  5. Chen X, He F, Yu P (2019) A matting method based on full feature coverage. Multimed Tools Appl 78(9):11173–11201

    Article  Google Scholar 

  6. Fang S, Li J, Tian Y, Huang T, Chen X (2016) Learning discriminative subspaces on random contrasts for image saliency analysis. IEEE Trans Neural Netw Learn Syst 1095–1108

  7. Gong C, Tao D, Liu W, Maybank SJ, Fang M, Fu K, Yang J (2015) Saliency propagation from simple to difficult, CVPR

  8. Huang F, Qi J, Lu H, Zhang L, Ruan X (2017) Salient object detection via multiple instance learning. IEEE Trans Image Process 26(4):1911–1922

  9. Huo L, Jiao L, Wang S, Yang S (2016) Object-level saliency detection with color attributes. Pattern Recogn 49:162–173

    Article  Google Scholar 

  10. Itti L (2004) Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans Image Process 13(10):1304–1318

    Article  Google Scholar 

  11. Jiang B, Zhang L, Lu H, Yang C, Yang M (2013) Saliency detection via absorbing markov chain, CVPR, 1665–1672

  12. Lee G, Tai YW, Kim J (2016) Deep saliency with encoded low level distance map and high level features, CVPR 660–668

  13. Li G, Yu Y (2016) Visual saliency detection based on multi-scale deep CNN features. IEEE Trans Image Process 25(11):5012–5024

    Article  MathSciNet  Google Scholar 

  14. Li Y, Hou X, Koch C, Rehg JM, Yuille AL (2014) The secrets of salient object segmentation. CVPR 280–287

  15. Li H, Lu H, Lin Z, Shen X, Price B (2015) Inner and inter label propagation: salient object detection in the wild. IEEE Trans Image Process 24(10):3176–3186

    Article  MathSciNet  Google Scholar 

  16. Liu G, Yang J (2019) Exploiting color volume and color difference for salient region detection. IEEE Trans Image Process 28(1):6–16

    Article  MathSciNet  Google Scholar 

  17. Mahadevan V, Vasconcelos N (2009) Saliency-based discriminated tracking, CVPR 1007–1013

  18. Movahedi V, Elder JH (2010) Design and perceptual validation of performance measures for salient object segmentation, POCV 49–56

  19. Pang Y, Yu X, Wang Y, Wu C (2019) Salient object detection based on novel graph model. J Vis Commun Image Rrepresent 65:102676

    Article  Google Scholar 

  20. Pang Y, Yu X, Wu Y, Wu C (2020) FSP: a feedback-based saliency propagation method for saliency detection. J Electron Imaging 29(1):013011

    Article  Google Scholar 

  21. Qin Y, Lu H, Xu Y, Wang H (2015) Saliency detection via cellular automata, CVPR 110–119

  22. Rutishauser U, Walther D, Koch C, Perona P (2004) Is bottom-up attention useful for object recognition? CVPR 37–44

  23. Sun J, Lu H, Liu X (2015) Saliency region detection based on Markov absorption probabilities. IEEE Trans Image Process 24(5):1639–1649

    Article  MathSciNet  Google Scholar 

  24. Tong N, Lu H, Ruan X, Yang M (2015) Salient object detection via bootstrap learning, CVPR 1884–1892

  25. Tong N, Lu H, Zhang Y, Ruan X (2015) Salient object detection via global and local cues. Pattern Recogn 48:3258–3267

    Article  Google Scholar 

  26. Tu WC, He S, Yang Q, Chien SY (2016) Real-time salient object detection with a minimum spanning tree, CVPR 2334–2342

  27. Von Neumann J. The general and logical theory of automata, Cerebral mechanisms in behavior 1–41

  28. Wang J, Lu H, Li X, Tong N, Liu W (2015) Salliency detection via background and foreground seed selection. Neurocomputing 152:359–368

    Article  Google Scholar 

  29. Wang L, Lu H, Xiang R, Yang M (2015) Deep networks for saliency detection via local estimation and global search, CVPR 3183–3192

  30. Wei Y, Wen F, Zhu W, Sun J (2012) Geodesic saliency using background priors, ECCV 29–42

  31. Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via L0 gradient minimization. ACM Trans Graph 30(6):174

    Google Scholar 

  32. Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection, CVPR 1155–1162

  33. Yang J, Yang M (2012) Top-down visual saliency via joint CRF and dictionary learning, CVPR 2296–2303

  34. Yang C, Zhang L, Lu H, Ruan X, Yang M (2013) Saliency detection via graph-based manifold ranking, CVPR 3166–3173

  35. Yu H, He F, Pan Y (2019) A Novel Segmentation Model for Medical Images with Intensity Inhomogeneity Based on Adaptive Perturbation. Multimed Tools Appl 78(9):11779–11798

    Article  Google Scholar 

  36. Zhang M, Pang Y, Wu Y, Du Y, Sun H, Zhang K (2018) Saliency detection via local structure propagation. J Vis Commun Image Rrepresent 52:131–142

    Article  Google Scholar 

  37. Zhang M, Wu Y, Du Y, Fang L, Pang Y (2018) Saliency detection integrating global and local information. J Vis Commun Image Rrepresent 53:215–223

    Article  Google Scholar 

  38. Zhang S, He F, Ren W (2020) Joint learning of image detail and transmission map for single image dehazing. Vis Comput 36(3):305–316

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61701101, 61973093, U1713216, 61901098, 61971118, and the Fundamental Research Fund for the Central Universities of China N2026005, N181602014, N2026004, N2026006 and N2026001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengdong Wu or Ming Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Wu, Y., Wu, C. et al. Salient object detection via effective background prior and novel graph. Multimed Tools Appl 79, 25679–25695 (2020). https://doi.org/10.1007/s11042-020-09226-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09226-5

Keywords

Navigation