Skip to main content
Log in

Forgery detection of motion compensation interpolated frames based on discontinuity of optical flow

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Motion Compensated Frame Interpolation (MCFI), a frame-based video operation to increase the motion continuity of low frame rate video, can be adopted by falsifiers for forging high bitrate video or splicing videos with different frame-rates. For existing MCFI detectors, their performance are degraded by stronger video compression, and noise. To deal with this problem, we propose a blind forensics method to detect the adopted MCFI operation. After investigating the synthetic process of interpolated frames, we discover that motion regions of interpolated frames exist some local slight artifacts, causing the optical flow based inter-frame discontinuity. To capture this irregularities introduced by various MCFI techniques, compact features are designed, which are calculated as Temporal Frame Difference-weighted histogram of Local Binary Pattern computed on Optical Flow field (TFD-OFLBP). Meanwhile, Local Inter-block and Edge-block difference Features (LIEF) are further proposed to detect interpolation frames with stable content. Besides, a set of forensics tools are adopted to eliminate the side effects of possible interferences of the scenes change, sudden lighting change, focus vibration, and some original frames with inherent local artifacts. Experimental results on four representative MCFI software and techniques show that the proposed approach outperforms existing MCFI detectors and also with robustness to compression, and noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adato Y., Zickler T., Ben-Shahar O. (2011) A polar representation of motion and implications for optical flow. In: Proceeding IEEE conference computer vision and pattern recognition (CVPR), pp 1145–1152

  2. Bestagini P., Battaglia S., Milani S., Tagliasacchi M., Tubaro S. (2013) Detection of temporal interpolation in video sequences. In: Proceeding International Conference Acoustics, Speech Signal Process.(ICASSP),May, pp 3033–3037

  3. Bian S., Luo W., Huang J. (2014) Detecting video frame-rate up conversion based on periodic properties of inter-frame similarity. Multimed. Tools Appl. 72 (1):437–451

    Article  Google Scholar 

  4. Black M.J., Anandan P (1993) A framework for the robust estimation of optical flow. In: Proceeding fourth international conference computer vision (ICCV), pp 231–236

  5. Chao J., Jiang X., Sun T. (2012) A novel video inter-frame forgery model detection scheme based on optical flow consistency. In: International workshop on digital watermarking, (IWDW), October, pp 267–281

  6. Chaudhry R., Ravichandran A., Hager G., Vidal R. (2009) Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: Proceeding IEEE conference computer vision pattern recognition (CVPR), June, pp 1932–1939

  7. Choi B.D., Han J.W., Kim C.S., Ko S.J. (2007) Motion-compensated frame interpolation using bilateral motion estimation and adaptive overlapped block motion compensation. IEEE Trans. Circuits Syst. Video Technol. 17(4):407–416

    Article  Google Scholar 

  8. Dar Y., Bruckstein A.M. (2015) Motion-compensated coding and frame rate up-conversion: models and analysis. IEEE Trans. Image Process. 24 (7):2051–2066

    MathSciNet  MATH  Google Scholar 

  9. Dietterich T.G., Bakiri G. (1995) Solving multiclass learning problems via error correcting output codes. J. Artif. Intell. Res. 2:263–286

    Article  Google Scholar 

  10. Ding X., Gaobo Y., Li R., Zhang L., Li Y., Sun X. (2018) Identification of motion-compensated frame rate up-conversion based on residual signal. IEEE Trans. Circuits Syst. Video Technol. 28(7):1497–1512

    Article  Google Scholar 

  11. Ding X., Li Y., Xia M., He J., Gaobo Y. (2019) Detection of motion compensated frame interpolation via motion-aligned temporal difference. Multimed. Tools Appl. 78(6):7453–7477

    Article  Google Scholar 

  12. Ding X., Zhu N., Li L., Li Y., Gaobo Y. (2019) Robust localization of interpolated frames by motion-compensated frame-interpolation based on artifact indicated map and tchebichef moments. IEEE Trans. Circuits Syst. Video Technol. 29(7):1893–1906

    Article  Google Scholar 

  13. Feng C., Xu Z., Jia S., Zhang W., Xu Y. (2017) Motion-adaptive frame deletion detection for digital video forensics. IEEE Trans. Circuits Syst. Video Technol. 27(12):2543–2554

    Article  Google Scholar 

  14. Fridrich J., Soukal D., Lukas J. (2003) Detection of copy-move forgery in digital images. In: Proceeding digital forens research workshop

  15. H.264/AVC software[Online]. Available: http://iphome.hhi.de/suehring/tml/

  16. H.265/HEVC software[Online]. Available: : https://hevc.hhi.fraunhofer.de/

  17. Hastie T., Tibshirani R. (1998) Classification by pairwise coupling. Ann. Statist. 26(2):451–C471

    Article  MathSciNet  Google Scholar 

  18. Hsu C.C., Hung T.Y., Lin C.W., Hsu C.T (2008) Video forgery detection using correlation of noise residue. In: Proceeding IEEE International Workshop Multimedia Signal Process (MMSP), Oct. pp 170–174

  19. Jia S., Feng C., Xu Z., Xu Y., Wang T. (2014) ACE algorithm in the application of video forensics. In: Proceeding international conference multimedia, communication computing application (MCCA), pp 177–184

  20. Jia S., Xu Z., Wang H., Feng C., Wang T. (2018) Coarse-to-fine copy-move forgery detection for video forensics. IEEE Access 6:25323–25335

    Article  Google Scholar 

  21. Jung D.J., Lee H.K. (2017) Frame-rate conversion detection based on periodicity of motion artifact. Multimed. Tools Appl., pp 1–22

  22. Kodovsky J., Fridrich J., Holub V. (2012) Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2):432–444

    Article  Google Scholar 

  23. Li R., Gan Z., Cui Z., Tang G., Zhu X. (2014) Multi-channel mixed-pattern based frame rate up-conversion using spatio-temporal motion vector refinement and dual weighted overlapped block motion compensation. J. Disp. Technol. 10 (12):1010–1023

    Article  Google Scholar 

  24. Li Q., Lin W., Fang Y. (2016) No-reference quality assessment for multiply-distorted images in gradient domain. IEEE Signal Process. Lett. 23(4):541–545

    Article  Google Scholar 

  25. Li R., Liu Z., Zhang Y., Li Y., Fu Z. (2016) Noise-level estimation based detection of motion-compensated frame interpolation in video sequences. Multimed. Tools Appl., pp 1–26

  26. Li Y., mei L., Li R., Wu C. (2018) Using noise level to detect frame repetition forgery in video frame rate up-conversion. Future Internet 10 (9):84(1–11)

    Article  Google Scholar 

  27. Mahdian B., Saic S. (2008) Blind authentication using periodic properties of interpolation. IEEE Trans. Inf. Forensics Secur. 3(3):529–538

    Article  Google Scholar 

  28. Milani S., Fontani M., Bestagini P., Barni M., Piva A., Tagliasacchi M., Tubaro S. (2012) An overview on video forensics. APSIPA Trans. Signal Inf. Process. 1:1–18

    Article  Google Scholar 

  29. Ojala T., Pietikainen M., Maenpaa T. (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7):971–987

    Article  Google Scholar 

  30. Portz T., Zhang L., Jiang H. (2012) Optical flow in the presence of spatially-varying motion blur. In: Proceeding IEEE conference on computer vision and pattern recognition (CVPR),June, pp 1752–1759

  31. Rijsbergen C.J.V. (1979) Information Retrieval. Newton, MA, USA: Butterworth-Heinemann

  32. Singh R.D., Aggarwal N. (2017) Optical flow and prediction residual based hybrid forensic system for inter-frame tampering detection. J. Circuit Syst. Comp. 26(7):1750107(1–37)

    Article  Google Scholar 

  33. Stamm M.C., Lin W., Liu K.J. (2012) Temporal forensics and anti-forensics for motion compensated video. IEEE Trans. Inf. Forensics Security. 7 (4):1315–1329

    Article  Google Scholar 

  34. Stamm M.C., Wu M., Liu K.J.R. (2013) Information forensics: an overview of the first decade. IEEE Access. 1:167–200

    Article  Google Scholar 

  35. Su L., Li C., Lai Y., Yang J. (2018) A fast forgery detection algorithm based on exponential-fourier moments for video region duplication. IEEE Trans. Multimed. 20(4):825–840

    Article  Google Scholar 

  36. Sun D., Roth S., Black M.J. (2014) A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2):115–137

    Article  Google Scholar 

  37. The online video databases[Online]. Available: http://media.xiph.org/video/derf/%23

  38. The MCFI softwares[Online]. Available: http://www.wondershare.com/multimedia-tips/slow-motion-software.html

  39. Wang W., Farid H (2007) Exposing digital forgeries in interlaced and deinterlaced video. IEEE Trans. Inf. Forensics Secur. 2(3):438–449

    Article  Google Scholar 

  40. Wang W., Jiang X., Wang S., Wan M., Sun T. (2013) Identifying video forgery process using optical flow. In: International workshop on digital watermarking (IWDW), October, pp 244–257

  41. Wu Y., Jiang X., Sun T., Wang W. (2014) Exposing video inter-frame forgery based on velocity field consistency. In: Proceeding international conference acoustics speech signal process. (ICASSP), May, pp 2674–2678

  42. Xia M., Yang G., Li L., Li R., Sun X. (2017) Detecting video frame rate up-conversion based on frame-level analysis of average texture variation. Multimed. Tools Appl. 76(6):8399–8421

    Article  Google Scholar 

  43. Yao H., Ni R., Zhao Y. (2019) An approach to detect video frame deletion under anti-forensics. J. Real-Time Image Proc. 1–14

  44. Yao Y., Yang G., Sun X., Li L. (2016) Detecting video frame-rate up-conversion based on periodic properties of edge-intensity. J. Inf. Secur. Appl. 26:39–50

    Google Scholar 

  45. Yoo D.G., Kang S.J., Kim Y.H. (2013) Direction-select motion estimation for motion-compensated frame rate up-conversion. J. Display Technol. 9 (10):840–850

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Doctoral research foundation of Hunan University of Science and Technology under E51974, the Scientific Research Foundation of Hunan Provincial Education Department of China under 19B199, and the Natural Science Foundation of Hunan Province of China under Grant 2020JJ4029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangling Ding.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Huang, Y., Li, Y. et al. Forgery detection of motion compensation interpolated frames based on discontinuity of optical flow. Multimed Tools Appl 79, 28729–28754 (2020). https://doi.org/10.1007/s11042-020-09340-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09340-4

Keywords

Navigation