Skip to main content
Log in

Arbitrary-shaped text detection with adaptive convolution and path enhancement pyramid network

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, scene text detection has become an active research field, which is an essential component of scene text reading. Especially, segmentation-based methods are commonly used, since the segmentation results can describe text of arbitrary shape. However, curve texts have a diversity of shapes, scales and orientations, which are difficult to locate, so the detector requires to adjust the local receptive fields size adaptively, which can aggregate multi-scale spatial information to accurately locate the curve text instance. Moreover, the low-level features are critical for localizing large text instances. When using Feature Pyramid Network (FPN) for multi-scale feature fusion, it will prevent the flow of accurate localization signals due to the long path from low-level to top-level. In order to solve these two problems, this paper proposes an Adaptive Convolution and Path Enhancement Pyramid Network (ACPEPNet), which can more accurately locate the text instances with arbitrary shapes. Firstly, an Adaptive Convolution Unit is introduced to improve the ability of backbone to aggregate multi-scale spatial information at the same stage. Specially, this unit is a lightweight component and without the cost of computations, based on this component we present a backbone network for text features extraction. Secondly, the original FPN structure is redesigned to build a short path from the low-level to top-level, in this way, we modify the path from one-way flow to two-way flow and add original features to the final stage of information fusion. Experiments on CTW1500, Total-Text, ICDAR 2015 and MSRA-TD500 validate the robustness of the proposed method. When there is no bells and whistles, this method achieves an F-measure of 80.8% without external training data on CTW1500.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ch’ng CK, Chan CS (2017) Total-text: a comprehensive dataset for scene text detection and recognition. In: Proc. ICDAR, pp 935–942

  2. Chen X, Girshick R, He K, Dollár P (2019) TensorMask: a foundation for dense object segmentation. In: Proc. ICCV, pp 2061–2069

  3. Chen K, Pang J, Wang J, Yu X, Li X, Sun S (2019) Hybrid task cascade for instance segmentation. In: Proc. CVPR, pp 4974–4983

  4. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proc. CVPR, pp 1251–1258

  5. De Boer P-T, Kroese DP, Mannor S, Rubinstein RY (2005) A tutorial on cross-entropy method. Ann Oper Res 134:19–67

    Article  MathSciNet  Google Scholar 

  6. Deng D, Liu H, Li X, Deng C (2018) Pixellink: detecting scene text via instance segmentation. In: Proc. AAAI, pp 6773–6780

  7. Gao H, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proc. CVPR, pp 4700–4708

  8. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proc. ICCV, pp 1026–1034

  9. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proc. CVPR, pp 770–778

  10. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: Proc. ECCV, pp 630–645

  11. He W, Zhang X-Y, Yin F, Liu C-L (2017) Deep direct regression for multi-oriented scene text detection. In: Proc. ICCV, pp 745–753

  12. Hu H, Zhang C, Luo Y, Wang Y, Han J, Ding E (2017) Wordsup: exploiting word annotations for character based text detection. In: Proc. ICCV, pp 4940–4949

  13. Hu S, Wang G, Wang Y, Chen C, Pan Z (2020) Accurate image super-resolution using dense connections and dimension reduction network. Multimedia Tools and Application 79:1427–1443

    Article  Google Scholar 

  14. Huang Z, Huang L, Gong Y, Huang C, Wang X (2019) Mask scoring r-cnn. In: Proc. CVPR, pp 6409–6418

  15. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: PMLR, vol 37, pp 448–456

  16. Karatzas D, Gomez-Bigorda L, Nicolaou A, Ghosh S, Bagdanov A, Iwamura M, Matas J, Neumann L, Chandrasekhar VR, Lu S, Shafait F, Uchida S, Valveny E (2015) ICDAR 2015 competition on robust reading. In: Proc. ICDAR, pp 1156–1160

  17. Li X, Wang W, Hu X, Yang J (2019) Selective kernel networks. In: Proc. CVPR, pp 510–519

  18. Liao M, Shi B, Bai X, Wang X, Liu W (2017) Textboxes: A fast text detector with a single deep neural network. In: Proc AAAI, pp 4161–4167

  19. Liao X, Zheng Q, Ding L (2017) Data embedding in digital images using critical function. Signal Process Image Commun 58:146–156

    Article  Google Scholar 

  20. Liao X, Li K, Yin J (2017) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimedia Tools and Application 76:20739–20753

    Article  Google Scholar 

  21. Liao M, Shi B, Bai X (2018) Textboxes++: A single-shot oriented scene text detector. IEEE Trans Image Process 27(8):3676–3690

    Article  MathSciNet  Google Scholar 

  22. Liao M, Zhu Z, Shi B, Xia G-s, Bai X (2018) Rotation-sensitive regression for oriented scene text detection. In: Proc. CVPR, pp 5909–5918

  23. Lin T-Y, Doll’ar P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proc. CVPR, pp 2117–2125

  24. Liu Y, Jin L, Zhang S, Zhang S (2017) Detecting curve text in the wild: New dataset and new solution. arXiv preprint arXiv:1712.02170

  25. Liu S, Lu Q, Qin H, Shi J, Jia J (2018) Path aggregation network for instance segmentation. In: Proc. CVPR, pp 8759–8768

  26. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proc. CVPR, pp 3431–3440

  27. Long S, Ruan J, Zhang W, He X, Wu W, Yao C (2018) Textsnake: a flexible representation for detecting text of arbitrary shapes. In: Proc. ECCV, pp 20–36

  28. Lu XK, Ma C, Ni B, Yang X, Reid I, Yang M-H (2018) Deep regression tracking with shrinkage loss. In: Proc. ECCV, pp 353–369

  29. Lu X, Ma C, Ni B, Yang X (2019) Adaptive region proposal with channel regularization for robust object tracking. IEEE Transactions on Circuits and Systems for Video Technology

  30. Lu X, Wang W, Ma C, Shen J, Shao L, Porikli F (2019) See more, know more: unsupervised video object segmentation with co-attention siamese networks. In: Proc. CVPR, pp 3623–3632

  31. Lu XK, Wang W, Shen J, Tai Y-W, Crandall D, Hoi SCH (2020) Learning video object segmentation from unlabeled videos. In: Proc. CVPR, pp 8960–8970

  32. Lyu P, Yao C, Wu W, Yan S, Bai X (2018) Multi-oriented scene text detection via corner localization and region segmentation. In: Proc. CVPR, pp 7553–7563

  33. Ma J, Shao W, Ye H, Wang L, Wang H, Zheng Y, Xue X (2018) Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans Multimedia 20(11):3111–3122

    Article  Google Scholar 

  34. Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3D vision, pp 565–571

  35. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proc. ICML, vol 807-814

  36. Pan H, Huang W, He T, Zhu Q, Yu Q, Li X (2017) Single shot text detector with regional attention. In: Proc. ICCV, pp 3047–3055

  37. Rezatofighi H, Tsoi M, Gwak JY, Sadeghian A, Reid I, Savarese S (2019) Generalized intersection over union: a metric and a loss for bounding box regression. In: Proc. CVPR, pp 658–666

  38. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proc.CVPR, pp 4510–4520

  39. Shi B, Bai X, Belongie S (2017) Detecting oriented text in natural images by linking segments. In: Proc. CVPR, pp 2550–2558

  40. Shrivastava A, Gupta A, Girshick R (2016) Training region-based object detectors with online hard example mining. In: Proc. CVPR, pp 761–769

  41. Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. In: Proc. ICML, vol 28, pp 1139–1147

  42. Tan M, Le QV (2019) Efficientnet: rethinking model scaling for convolutional neural networks. In: PMLR, vol 97, pp 6105–6114

  43. Tian Z, Huang W, He T, Pan H, Yu Q (2016) Detecting text in natural image with connectionist text proposal network. In: Proc. ECCV, pp 56–72

  44. Tian M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Quoc VL (2019) MnasNet: platform-aware neural architecture search for mobile. In: Proc. CVPR, pp 2820–2828

  45. Wang W, Xie E, Li X, Hou W, Lu T, Yu G, Shao S (2019) Shape robust text detection with progressive scale expansion network. In: Proc. CVPR, pp 9336–9345

  46. Wang Y, Wang G, Chen C, Pan Z (2019) Multi-scale dilated convolution of convolutional neural network for image denoising. Multimedia Tools and Application 78:19945–19960

    Article  Google Scholar 

  47. Wang Y, Hu S, Wang G, Chen C, Pan Z (2020) Multi-scale dilated convolution of convolutional neural network for crowd counting. Multimedia Tools and Application 79:1057–1073

    Article  Google Scholar 

  48. Xie E, Zang Y, Shao S, Yu G, Yao C, Li G (2019) Scene text detection with supervised pyramid context network. In: Proc. AAAI, pp 9038–9045

  49. Yao C, Bai X, Liu W, Ma Y, Zhuowen T (2012) Detecting texts of arbitrary orientations in natural images. In: Proc. CVPR, pp 1083–1090

  50. Yao C, Bai X, Liu W (2014) A unified framework for multioriented text detection and recognition. IEEE Trans Image Process 23(11):4737–4749

    Article  MathSciNet  Google Scholar 

  51. Yao C, Bai X, Sang N, Zhou X, Zhou S, Cao Z (2016) Scene text detection via holistic, multi-channel prediction. arXiv preprint arXiv:1606.09002

  52. Zheng Z, Zhang C, Shen W, Yao C, Liu W, Bai X (2016) Multi-oriented text detection with fully convolutional networks. In: Proc. CVPR, pp 4159–4167

  53. Zheng Q, Li Z, Zhang Z, Bao Y, Yu G, Peng Y, Sun J (2019) ThunderNet: towards real-time generic object detection. In: Proc. ICCV, pp 6718–6727

  54. Zhou X, Yao C, He W, Wang Y, Zhou S, He W, Liang J (2017) East: an efficient and accurate scene text detector. In: Proc. CVPR, pp 5551–5560

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province (ZR2019MF050), the Shandong Province colleges and universities youth innovation technology plan innovation team project under Grant (No.2020KJN011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., Wang, G., Dong, Q. et al. Arbitrary-shaped text detection with adaptive convolution and path enhancement pyramid network. Multimed Tools Appl 79, 29225–29242 (2020). https://doi.org/10.1007/s11042-020-09440-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09440-1

Keywords

Navigation