Skip to main content
Log in

Indirect illumination with efficient monte carlo integration and denoising

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Herein, an interactive, one-bounce, and indirect illumination algorithm that considers indirect visibility even in a fully dynamic scene is introduced. First, a small number of rays are randomly emitted on the hemisphere of the current pixel to obtain the first intersection point in a scene. If this point is directly illuminated by the light source, its illuminated color is collected by sampling the reflective shadow maps for gathering the indirect illumination. Second, to approximate indirect visibility, a three-dimensional ray marching algorithm (MRM) is used; the algorithm is based on a mipmap hierarchy structure generated by voxelizing the scene to accelerate the ray–voxel intersection. Third, images of indirect illumination are denoised by iterating an improved edge-avoiding filtering via a local means replacement method (LMR). Finally, variance-clip temporal filtering on the merged global illumination image is applied to further eliminate jitter. The implementation demonstrates that the algorithm used in this study can efficiently generate high-quality global illumination images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bako S, Vogels T, Mcwilliams B, Meyer M, Novák J, Harvill A, Sen P, Derose T, Rousselle F (2017) Kernel-predicting convolutional networks for denoising monte carlo renderings. ACM Transactions on Graphics

  2. Christensen PH, Jarosz W (2016) The path to path-traced movies. Foundations and Trends in Computer Graphics and Vision 10(2):103–175

    Article  Google Scholar 

  3. Claypool KT, Claypool M (2007) On frame rate and player performance in first person shooter games. Multimedia Systems 13(1):3–17

    Article  Google Scholar 

  4. Crassin C, Neyret F, Lefebvre S, Eisemann E (2009) Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In: I3D ’09 Proceedings of the 2009 symposium on Interactive 3D graphics and games, pp 15–22

  5. Crassin C, Neyret F, Sainz M, Green S, Eisemann E (2011) Interactive indirect illumination using voxel cone tracing. Computer Graphics Forum 30(7):1921–1930

    Article  Google Scholar 

  6. Dachsbacher C, Stamminger M (2005) Reflective shadow maps. In: Symposium on interactive 3D graphics and games, pp 203–208

  7. Dachsbacher C, Stamminger M (2006) Splatting indirect illumination. In: I3D ’06 Proceedings of the 2006 symposium on Interactive 3D graphics and games, pp 93–100

  8. Dammertz H, Sewtz D, Hanika J, Lensch HPA (2010) Edge-avoiding a-trous wavelet transform for fast global illumination filtering. In: Conference on high performance graphics, Eurographics Association

  9. Dong Z, Grosch T, Ritschel T, Kautz J, Seidel HP (2009) Real-time indirect illumination with clustered visibility. In: Proceedings of vision modeling and visualization

  10. Eilertsen G, Mantiuk RK, Unger J (2015) Real-time noise-aware tone mapping. ACM Transactions on Graphics (TOG) 34(198):198:1–198:15

    Google Scholar 

  11. Fattal R (2009) Edge-avoiding wavelets and their applications. ACM Transactions on Graphics (TOG) 28(3):22:1–22:10

    Article  Google Scholar 

  12. Fujimoto A, Tanaka T, Iwata K (1986) Arts: Accelerated ray-tracing system. IEEE Comput Graph Appl 6(4):16–26

    Article  Google Scholar 

  13. Ganestam P, Doggett M (2016) Sah guided spatial split partitioning for fast bvh construction. Computer Graphics Forum 35(2):285–293

    Article  Google Scholar 

  14. Huang J, Yagel R, Filippov V, Kurzion Y (1998) An accurate method for voxelizing polygon meshes. IEEE Symposium on Volume Visualization

  15. Jamriska O, Havran V (2010) Interactive ray tracing of distance fields. In: Proceedings of CESCG 2010: The 14th central European seminar on computer graphics

  16. Jensen HW (1996) Global illumination using photon maps. In: Eurographics Rendering Workshop 1996, pp 21–30

  17. Kajiya JT (1986) The rendering equation. ACM SIGGRAPH Computer Graphics 20(4):143–150

    Article  Google Scholar 

  18. Kaplanyan A, Dachsbacher C (2010) Cascaded light propagation volumes for real-time indirect illumination. In: I3D ’10 Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, p 99–107

  19. Karis B (2014) High quality temporal supersampling. Advances in Real-Time Rendering in Games course Siggraph2014

  20. Kay TL, Kajiya JT (1986) Ray tracing complex scenes. In: Proceedings of the 13th annual conference on computer graphics and interactive techniques, pp 269–278

  21. Keller A (1997) Instant radiosity. In: Proc of Acm Siggraph, pp 49–56

  22. Laine S, Saransaari H, Kontkanen J, Lehtinen J, Aila T (2007) Incremental instant radiosity for real-time indirect illumination. In: Proc of EGSR, pp 277–286

  23. Lensing P, Broll W (2013) Efficient shading of indirect illumination applying reflective shadow maps. In: I3D ’13 Proceedings of the ACM SIGGRAPH symposium on interactive 3D graphics and games, pp 95–102

  24. Mara M, Mcguire M, Bitterli B, Jarosz W (2017) An efficient denoising algorithm for global illumination. High Performance Graphics

  25. Nichols G, Shopf J, Wyman C (2009) Hierarchical image-space radiosity for interactive global illumination. Computer Graphics Forum, pp 1141–1149

  26. Nichols G, Wyman C (2009) Multiresolution splatting for indirect illumination. In: I3D ’09 Proceedings of the 2009 symposium on Interactive 3D graphics and games, pp 83–90

  27. Oh K, Ki H, Lee C (2006) Pyramidal displacement mapping: a gpu based artifacts-free ray tracing through an image pyramid. In: Proceedings of the ACM symposium on virtual reality software and technology, pp 75–82

  28. Perlin K, Hoffert EM (1989) Hypertexture. ACM SIGGRAPH Computer Graphics 23(3):253–262

    Article  Google Scholar 

  29. Phong BT (1975) Illumination for computer generated pictures. Communications of the ACM

  30. Prutkin R, Kaplanyan AS, Dachsbacher C (2012) Reflective shadow map clustering for real-time global illumination. In: Proceedings of the eurographics short papers, pp 9–12

  31. Ritschel T, Dachsbacher C, Grosch T, Kautz J (2012) The state of the art in interactive global illumination. Computer Graphics Forum 31(1):160–188

    Article  Google Scholar 

  32. Ritschel T, Eisemann E, Ha I, Kim JD, Seidel HP (2011) Making imperfect shadow maps view-adaptive: High-quality global illumination in large dynamic scenes. Computer Graphics Forum 30(8):2258–2269

    Article  Google Scholar 

  33. Ritschel T, Engelhardt T, Grosch T, Seidel HP, Kautz J, Dachsbacher C (2009) Micro-rendering for scalable, parallel final gathering. ACM Transactions on Graphics (TOG) 28(5):132:1–132:8

    Google Scholar 

  34. Ritschel T, Grosch T, Kim MH, Seidel HP, Dachsbacher C, Kautz J (2008) Imperfect shadow maps for efficient computation of indirect illumination. ACM Transactions on Graphics 27(5):129:1–129:8

    Article  Google Scholar 

  35. Salvi M (2016) An excursion in temporal super sampling. GDC16-san Francisco

  36. Schied C, Salvi M, Kaplanyan A, Wyman C, Lefohn A (2017) Spatiotemporal variance-guided filtering: real-time reconstruction for path-traced global illumination. High Performance Graphics

  37. Schwarz M, Seidel HP (2010) Fast parallel surface and solid voxelization on gpus. Acm Trans Graphics 29(6):1–10

    Article  Google Scholar 

  38. Sugihara M, Rauwendaal R, Salvi M (2014) Layered reflective shadow maps for voxel-based indirect illumination. High Performance Graphics. Eurographics Association

  39. Thiedemann S, Henrich N, Grosch T, Muller S (2011) Voxel-based global illumination. I3D ’11 symposium on interactive 3D graphics and games, pp 103–110

  40. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: IEEE international conference on computer vision, pp 839–846

  41. Tomczak LJ (2012) Gpu ray marching of distance fields. Technical report, University of Pennsylvania. (Zitiert auf Seiten 22 und 24.)

  42. Vinkler M, Havran V, Bittner J (2015) Performance comparison of bounding volume hierarchies and kd-trees for gpu ray tracing. Computer Graphics Forum 35(8):68–79

    Article  Google Scholar 

  43. Williams L (1978) Casting curved shadows on curved surfaces. ACM SIGGRAPH Computer Graphics 12(3):270–274

    Article  Google Scholar 

  44. Yang JC, Hensley J, Grün H, Thibieroz N (2010) Real-time concurrent linked list construction on the gpu. Computer Graphics Forum 29(4):1297–1304

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07050099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Oh, K. Indirect illumination with efficient monte carlo integration and denoising. Multimed Tools Appl 80, 10167–10185 (2021). https://doi.org/10.1007/s11042-020-09884-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09884-5

Keywords

Navigation