Skip to main content
Log in

A lattice-based searchable encryption scheme with the validity period control of files

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In recent years, with the dramatic increase in the use of multimedia data, rapid retrieval and sharing of the multimedia data have become major trends. The validity period control function widely used in daily softwares, which enables multimedia data to be shared from a specific time and revokes the authorization of shared data at another specific time, thereby effectively enhancing the personalized experience of multimedia data users. At the same time, to protect privacy, databases usually store data in an encrypted form and use searchable encryption technology to retrieve keywords on the ciphertext to quickly extract the required multimedia data. However, the existing searchable encryption scheme cannot control the reading of multimedia data by using validity period. To solve this problem, we propose a lattice-based searchable encryption scheme with the validity period control of files. In order that the data owners have flexible and fine-grained control over the files, we convert the time information into a lattice vector for setting a different valid time for each file. Meanwhile, we embed the time information into the ciphertext, so that the data owner only needs to set the validity period once to automatically maintain the life cycle of the files over encrypted data, instead of manually withdrawing each expired file. Furthermore, we combine searchable encryption and time-distance so that our scheme returns valid files only if the keywords match correctly and the search time matches the file’s validity period. This scheme is a candidate for time-controlled searchable encryption technology in the post-quantum era because our scheme constructed on learning with error (LWE) problem which has been proven to resist quantum attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agrawal S, Boneh D, Boyen X (2010) Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE[c]. In: Annual cryptology conference. Springer, Berlin, pp 98–115

  2. Alwen J, Peikert C (2011) Generating shorter bases for hard random lattices. Theor Comput Syst 48:535–553

    Article  MathSciNet  Google Scholar 

  3. BONEH D, CRESCENZO G D, OSTROVSKY R, et al. (2004) Public key encryption with keyword search[J]. Eurocrypt 3027(16):506–522

    MathSciNet  MATH  Google Scholar 

  4. Baek J, Safavi-Naini R, Susulo W (2008) Public key encryption with keyword search revisited[C]. In: International conference on computational science and its applications. Springer, Berlin, pp 1249–1259

  5. Cash D, Hofheinz D, Kiltz E, et al. (2010) Bonsai trees, or how to delegate a lattice basis[C]. In: Annual international conference on the theory and applications of cryptographic techniques. Springer, Berlin, pp 523–552

  6. Emura K, Miyaji A, Omote KA (2011) Timed-release proxy re-encryption scheme[J]. IEICE Trans Fundament Electron Commun Comput Sci 94 (8):1682–1695

    Article  Google Scholar 

  7. Farràs O, Ribes-González J (2019) Provably secure public-key encryption with conjunctive and subset keyword search[J]. Int J Inf Secur 18(5):533–548

    Article  Google Scholar 

  8. GOH EJ (2003) Secure indexes[J]. IACR Cryptol ePrint Arc 2003:216

    Google Scholar 

  9. Gentry C, Halevi S, Vaikuntanathan V (2010) A simple BGNtype cryptosystem from LWE[C]. In: Annual international conference on the theory and applications of cryptographic techniques. Springer, Berlin, pp 506–522

  10. Gentry C, Peikert C, Vaikuntanathan V (2008) Trapdoors for hard lattices and new cryptographic constructions[C]. In: Proceedings of the fortieth annual ACM symposium on Theory of computing. ACM, pp 197–206

  11. Gu CX, Guang Y, Zhu YF, et al. (2013) Public key encryption with keyword search from lattices[J]. Int J Inform Technol 19(1):1–10

    Google Scholar 

  12. Guo Z, Zhang H, Sun C, et al. (2018) Secure multi-keyword ranked search over encrypted cloud data for multiple data owners[J]. J Syst Softw 137:380–395

    Article  Google Scholar 

  13. Handa R, Krishna CR, Aggarwal N (2019) Searchable encryption: a survey on privacy-preserving search schemes on encrypted outsourced data[J]. Concurr Comput Pract Exp 31(17):e5201

    Article  Google Scholar 

  14. Hong J, Wen T, Guo Q, et al. (2019) Privacy protection and integrity verification of aggregate queries in cloud computing[J]. Clust Comput 22 (3):5763–5773

    Article  Google Scholar 

  15. Hou CJ, Liu F, Bai HT, et al. (2013) Public-key encryption with keyword search from Lattice[c]. In: p2p, Parallel, Grid, Cloud and Internet Computing (3PGCIC)2013 Eighth international conference on IEEE, pp 336–339

  16. Li J, Lin X, Zhang Y, et al. (2016) KSF-OABE: Outsourced attribute-based encryption with keyword search function for cloud storage[J]. IEEE Trans Serv Comput 10(5):715–725

    Article  Google Scholar 

  17. Liang K, Huang Q, Schlegel R (2013) A conditional proxy broadcast reencryption scheme supporting timed-release [C]. In: International conference on information security practice and experience. Springer, Berlin, pp 132–146

  18. MA MM, HE DB, KUMAR N, et al. (2018) Certificateless searchable public key encryption scheme for industrial internet of things[J]. IEEE Trans Indust Inform 14(2):759–767

    Article  Google Scholar 

  19. Miao Y, Liu X, Choo KKR, et al. (2019) Privacy-preserving attribute-based keyword search in shared multi-owner setting[J]. IEEE Trans Dependable Secure Comput

  20. Miao Y, Ma J, Liu X, et al. (2017) Attribute-based keyword search over hierarchical data in cloud computing[J]. IEEE Trans Serv Comput

  21. Miao Y, Ma J, Wei F, et al. (2017) VCSE: verifiable conjunctive keywords search over encrypted data without secure-channel[J]. Peer-to-Peer Netw Appl 10(4):995–1007

    Article  Google Scholar 

  22. Peikert C (2009) Public-key cryptosystems from the worst-case shortest vector problem[C]. In: Proceedings of the forty-first annual ACM symposium on theory of computing. ACM, pp 333–342

  23. Regev O (2009) On lattices, learning with errors, random linear codes, and cryptography[J]. J ACM (JACM) 56(6):34

    Article  MathSciNet  Google Scholar 

  24. SHOR PW (1999) Polynomial-time algorithms for prime factorizetion and discrete logarithms on a quantum computer[J]. SIAM Rev 41(2):303–332

    Article  MathSciNet  Google Scholar 

  25. Song D X, Wagner D, Perrig A (2000) Practical techniques for searches on encrypted data[C]//sp. IEEE Comput Soc

  26. Tahir S, Ruj S, Rajarajan M (2017) An efficient disjunctive query enabled ranked searchable encryption scheme[C]. In: 2017 IEEE Trustcom/BigDataSE/ICESS, IEEE, pp 425–432

  27. Wang S, Gao T, Zhang Y (2018) Searchable and revocable multi-data owner attribute-based encryption scheme with hidden policy in cloud storage[J]. PloS one 13(11):e0206126

    Article  Google Scholar 

  28. Xie R, Xu CX, He CL, et al. (2018) Lattice-based searchable public-key encryption scheme for secure cloud storage[J]. Int J Web Grid Serv 14 (1):3–20

    Article  Google Scholar 

  29. Xu P, Jin H, Wu QH, et al. (2013) Public-key encryption with fuzzy keyword search: a provably secure scheme under keyword guessing attack[J]. IEEE Trans Comput 62(11):2266–2277

    Article  MathSciNet  Google Scholar 

  30. Xu L, Yuan X, Steinfeld R, et al. (2019) Multi-Writer Searchable Encryption: an LWE-based realization and implementation [C]. In: Proceedings of the 2019 ACM asia conference on computer and communications security. New York: ACM, pp 122–133

  31. Yang Y, Ma M (2015) Conjunctive keyword search with designated tester and timing enabled proxy re-encryption function for e-health clouds[J]. IEEE Trans Inform Foren Secur 11(4):746–759

    MathSciNet  Google Scholar 

  32. Yang Y, Zheng XH, Chang V (2018) Lattice assumption based fuzzy information retrieval scheme support multi-user for secure multimedia cloud[J]. Multimed Tools Appl 77(2018):9927’lC9941

    Google Scholar 

  33. Yin H, Zhang J, Xiong Y, et al. (2019) CP-ABSE: a ciphertext-policy attribute-based searchable encryption scheme[J]. IEEE Access 7:5682–5694

    Article  Google Scholar 

  34. Zhang E, Li F, Niu B, et al. (2017) Server-aided private set intersection based on reputation[J]. Inform Sci 387:180–194

    Article  Google Scholar 

  35. Zhang Y, Li Y, Wang Y (2019) Efficient conjunctive keywords search over encrypted e-mail data in public key setting[J]. Appl Sci 9(18):3655

    Article  Google Scholar 

  36. Zhang E, Peng J, Li M (2017) Outsourcing secret sharing scheme based on homomorphism encryption[J]. IET Inform Secur 12(1):94–99

    Article  Google Scholar 

  37. Zhang X, Tang Y, Wang H (2019) Lattice-based proxy-oriented identity-based encryption with keyword search for cloud storage[J]. Inform Sci 494:193–207

    Article  MathSciNet  Google Scholar 

  38. Zhang XJ, Xu CX (2018) Trapdoor security lattice-based public-key searchable encryption with a designated cloud server[J]. Wirel Pers Commun 100 (3):907–921

    Article  MathSciNet  Google Scholar 

  39. Zhang B, Zhang FG (2011) An efficient public key encryption with conjunctive-subset keywords search[J]. J Netw Comput Appl 34(1):262–267

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (U1604156, 61901160. U1804164) and Science and Technology Research Project of Henan Province (192102210131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, E., Hou, Y. & Li, G. A lattice-based searchable encryption scheme with the validity period control of files. Multimed Tools Appl 80, 4655–4672 (2021). https://doi.org/10.1007/s11042-020-09898-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09898-z

Keywords

Navigation