Skip to main content
Log in

An advanced gradient texture feature descriptor based on phase information for infrared and visible image matching

  • 1134T: Multi-Source and Heterogeneous Multimedia Analytics
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Infrared and visible image matching has many applications in remote sensing, computer vision, military fields, etc. The differences in the many characteristics of infrared images and visible images make a robust feature description vital but difficult. Texture orientation information retains the general properties in refrared and visible images, and multi-scale, and multi-oriented Gabor filters can accurately reveal the texture orientation information. This paper presents a feature descriptor by capturing the phase information between neighboring pixels with Log-Gabor filters. Firstly, the original matching image is enhanced via histogram equalization to emphasize the regions of interest, and the gradient magnitude for each pixel is computed to extract the image profile, which advances the performance of the algorithm significantly. Secondly, multi-scale and multi-oriented Log–Gabor filters are utilized to obtain the angle information for different scales and phases in the neighboring region of each pixel, and the angle information is indexed by computing the maximum of energy, including the magnitude, real part, and imaginary part to generate the marked image in which the histograms of the subregion of the detected keypoints are employed to generate the feature descriptors. Finally, we advocate five evaluation measures for testing the performance of the algorithm. The proposed approach is evaluated with four data sets composed of images obtained in visible light and infrared spectra, and its performance is compared with the performance of the state-of-the-art algorithms: Scale-invariant feature transform(SIFT), Speeded up robust features(SURF), Oriented fast and rotated BRIEF(ORB), the edge-oriented histogram descriptor (EHD), the phase congruency edge-oriented histogram discriptor (PCEHD), and the Log–Gabor histogram descriptor (LGHD). The experimental results indicate that the performance of the proposed approach is higher than that of other state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Avants BB, Epstein C, Grossman M, Gee J (2008) Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12:26–41. https://doi.org/10.1016/j.media.2007.06.004

    Article  Google Scholar 

  2. Barrera F, Lumbreras F, Sappa AD (2013) Multispectral piecewise planar stereo using manhattan-world assumption. Pattern Recogn Lett 34(1):52–61. https://doi.org/10.1016/j.patrec.2012.08.009. http://www.sciencedirect.com/science/article/pii/S0167865512002656. Extracting Semantics from Multi-Spectrum Video

    Article  Google Scholar 

  3. Bay H, Ess A, Tuytelaars T, Goolab LV (2007) Surf : Speed-up robust features. Comput Vis Image Underst 110(3):346–359. https://doi.org/10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  4. Bhat KKS, Heikkilä J (2014) Line matching and pose estimation for unconstrained model-to-image alignment. In: 2014 2nd international conference on 3D vision, vol 1, pp 155–162

  5. Chen J, Shan S, He C, Zhao G, Pietikainen M, Chen X, Gao W (2010) Wld: A robust local image descriptor. IEEE PAMI 32(9):1705–1720. https://doi.org/10.1109/TPAMI.2009.155

    Article  Google Scholar 

  6. Cristhian A, Angel S, Ricardo T (2015) Lghd: A feature descriptor for matching across non-linear intensity variations. https://doi.org/10.1109/ICIP.2015.7350783

  7. Dana J, Anandan P (1993) Registration of visible and infrared images. In: Architecture, hardware, and forward-looking infrared issues in automatic object recognition, vol 1957, pp 2–13

  8. Daugman JG (1980) Two-dimensional spectral analysis of cortical receptive field profiles. Vis Res 20(10):847–856. https://doi.org/10.1016/0042-6989(80)90065-6. http://www.sciencedirect.com/science/article/pii/0042698980900656

    Article  Google Scholar 

  9. Daugman JG (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA 2(7):1160–1169. https://doi.org/10.1364/josaa.2.001160

    Article  Google Scholar 

  10. Daugman J (2001) Statistical richness of visual phase information: Update on recognizing persons by iris patterns. Int J Comput Vis 45(1):25–38. https://doi.org/10.1023/A:1012365806338

    Article  MATH  Google Scholar 

  11. Firmenichy D, Brown M, Süsstrunk S (2011) Multispectral interest points for rgb-nir image registration. In: 2011 18th IEEE international conference on image processing, pp 181–184

  12. Fu Z, Qin Q, Luo B, Wu C, Sun H (2019) A local feature descriptor based on combination of structure and texture information for multispectral image matching. IEEE Geosci Remote Sens Lett 16(1):100–104. https://doi.org/10.1109/LGRS.2018.2867635

    Article  Google Scholar 

  13. Kim S, Ryu S, Ham B, Kim J, Sohn K (2014) Local self-similarity frequency descriptor for multispectral feature matching. In: 2014 IEEE international conference on image processing (ICIP), pp 5746–5750

  14. Kubota T, Alford O (1997) Computation of orientational filters for real-time computer vision problems iii: Steerable system and vlsi architecture. RTI 3(1):37–58. https://doi.org/10.1006/rtim.1996.0044. http://www.sciencedirect.com/science/article/pii/S1077201496900443

    Article  Google Scholar 

  15. Leng C, Zhang H, Li B, Cai G, Pei Z, He L (2018) Local feature descriptor for image matching: A survey. IEEE Access PP:1–1. https://doi.org/10.1109/ACCESS.2018.2888856

    Article  Google Scholar 

  16. Leutenegger S, Chli M, Siegwart RY (2011) Brisk: Binary robust invariant scalable keypoints. In: 2011 International conference on computer vision, pp 2548–2555

  17. Li Q, Wang G, Liu J, Chen S (2009) Robust scale-invariant feature matching for remote sensing image registration. IEEE Geosci Remote Sens Lett 6 (2):287–291. https://doi.org/10.1109/LGRS.2008.2011751

    Article  Google Scholar 

  18. Li Y, Zou J, Jing J, Jin H, Yu H (2016) Establish keypoint matches on multispectral images utilizing descriptor and global information over entire image. Infrared Phys Technol 76:1–10. https://doi.org/10.1016/j.infrared.2016.01.011

    Article  Google Scholar 

  19. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. https://doi.org/10.1023/b:visi.0000029664.99615.94

    Article  Google Scholar 

  20. Mallat S, Yu G (2010) Super-resolution with sparse mixing estimators. IEEE Trans Image Process 19(11):2889–2900. https://doi.org/10.1109/TIP.2010.2049927

    Article  MathSciNet  MATH  Google Scholar 

  21. Manjunath BS, Ohm J, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol 11(6):703–715. https://doi.org/10.1109/76.927424

    Article  Google Scholar 

  22. Nava R, Escalante B, Cristobal G (2012) Texture image retrieval based on log-gabor features. In: Iberoamerican congress on pattern recognition, pp 414–421

  23. Nunes CFG, Pádua FLC (2017) A local feature descriptor based on log-gabor filters for keypoint matching in multispectral images. IEEE Geosci Remote Sens Lett 14(10):1850–1854. https://doi.org/10.1109/LGRS.2017.2738632

    Article  Google Scholar 

  24. Qiang Z, Yi L, Blum RS, Han J, Tao D (2017) Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review. Inform Fusion 40:57-75. https://doi.org/10.1016/j.inffus.2017.05.006

    Article  Google Scholar 

  25. Qin Y, Cao Z, Zhuo W, Yu Z (2014) Robust key point descriptor for multi-spectral image matching. J Syst Eng Electron 25(4):681–687. https://doi.org/10.1109/JSEE.2014.00078

    Article  Google Scholar 

  26. Rublee E, Rabaud V, Konolige K, Bradski G (2012) Orb: An efficient alternative to sift or surf. ECCV ICCV2012:1–8. https://doi.org/10.1109/ICCV.2011.6126544

    Article  Google Scholar 

  27. Saleem S, Bais A, Sablatnig R, et al. (2017) Feature points for multisensor images. Comput Electr Eng 62:511–523. https://doi.org/10.1016/j.compeleceng.2017.04.032

    Article  Google Scholar 

  28. Saleem S, Sablatnig R (2014) A robust sift descriptor for multispectral images. IEEE Signal Processing Letters 21(4):400–403. https://doi.org/10.1109/LSP.2014.2304073

    Article  Google Scholar 

  29. Senthilkumaran N, Thimmiaraja J (2014) Histogram equalization for image enhancement using mri brain images. In: 2014 World congress on computing and communication technologies, pp 80–83

  30. Senthilnath J, Kalro NP (2014) Accurate point matching based on multi-objective genetic algorithm for multi-sensor satellite imagery. Appl Math Comput 236 (2):546–564. https://doi.org/10.1016/j.amc.2014.03.070

    MathSciNet  MATH  Google Scholar 

  31. Sinisa T, Narendra A (2008) Region-based hierarchical image matching. Int J Computer Vision 78(1):47–66. https://doi.org/10.1007/s11263-007-0077-5

    Article  Google Scholar 

  32. Son J, Kim S, Sohn K (2015) A multi-vision sensor-based fast localization system with image matching for challenging outdoor environments. Expert Syst Appl 42(22):8830–8839. https://doi.org/10.1016/j.eswa.2015.07.035

    Article  Google Scholar 

  33. Sonn S, Bilodeau G, Galinier P (2013) Fast and accurate registration of visible and infrared videos. In: 2013 IEEE conference on computer vision and pattern recognition workshops, pp 308–313

  34. Tang FLZTJ (2014) A webber local binary pattern descriptor for pancreas endoscopic ultrasound image classification. In: 2014 IEEE workshop on electronics, computer and applications, pp 836–839

  35. Torabi A, Bilodeau G (2013) Local self-similarity-based registration of human rois in pairs of stereo thermal-visible videos. Pattern Recogn 46 (2):578–589. https://doi.org/10.1016/j.patcog.2012.07.026. http://www.sciencedirect.com/science/article/pii/S0031320312003445

    Article  Google Scholar 

  36. Tuytelaars T, Mikolajczyk K (2008) Local invariant feature detectors: A survey. now. https://ieeexplore.ieee.org/document/8187492

  37. Yi X, Wang B, Fang Y, Liu S (2013) Registration of infrared and visible images based on the correlation of the edges. pp 990–994

  38. Yi Z, Zhiguo C, Yang X (2008) Multi-spectral remote image registration based on sift. Electron Lett 44(2):107–108. https://doi.org/10.1049/el:20082477

    Article  Google Scholar 

  39. ZHENG H, LI S-Y, SHAO Y-Y, YANG S (2017) Typical building of multi-sensor image feature extraction and recognition. pp 259–272

  40. Zhang B, Liu J (2010) The registration of aerial infrared and visible images. In: 2010 International conference on educational and information technology, vol 1, pp V1–438–V1–442

  41. Zhuang Y, Gao K, Miu X, Han L, Gong X (2015) Equation infrared and visual image registration based on mutual information with a combined particle swarm optimization-powell search algorithm. Optik - International Journal for Light and Electron Optics 127:188–191. https://doi.org/10.1016/j.ijleo.2015.09.199

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under Grant No. 61671170, 61872085, and 51875138, Science and Technology Foundation of National Defense Key Laboratory of Science and Technology on Parallel and Distributed Processing Laboratory (PDL) under Grant No.6142110180406, Science and Technology Foundation of ATR National Defense Key Laboratory under Grant No. 6142503180402, China Academy of Space Technology(CAST). Innovation Fund under Grant No.2018CAST33, Joint Fund of China Electronics Technology Group Corporation and Equipment Pre-Research under Grant No.6141B08231109, Excellent Discipline Team project no.JDXKTD-2019008. Basic Scientific Research Business Expenses of Provincial Universities in Heilongjiang Province No.2019-KYYWF-1384.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Bao Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, JB., Pan, JS. et al. An advanced gradient texture feature descriptor based on phase information for infrared and visible image matching. Multimed Tools Appl 80, 16491–16511 (2021). https://doi.org/10.1007/s11042-020-10213-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10213-z

Keywords

Navigation