Skip to main content
Log in

Robust automated graph regularized discriminative non-negative matrix factorization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Non-negative matrix factorization (NMF) and its variants have been widely employed in clustering and classification task. However, the existing methods do not consider robustness, adaptive graph learning and discrimination information at the same time. To solve this problem, a new nonnegative matrix factorization method is proposed, which is called robust automated graph regularized discriminative non-negative matrix factorization (RAGDNMF). Specifically, L2,1 norm is used to describe the reconstruction error, the appropriate Laplacian graph is automatically learned and the label information of the training set is added as the regularization term. The ultimate goal is to learn a good projection matrix, which can remove redundant information while preserving the effective components. In addition, we give the multiplicative updating rules for solving optimization problems and convergence proof of objective function. Face recognition experiments on four benchmark datasets show the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arora S, Ge R, Kannan R, Moitra A (2012) Computing a nonnegative matrix factorization-provably. In: ACM symposium on theory of computing, pp 145–162

  2. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  3. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  Google Scholar 

  4. Berry M, Browne M, Langville A, Pauca V, Plemmons R (2007) Algorithms and applications for approximate nonnegative matrix factorization. Comput Stat Data Anal 52(1):155–173

    Article  MathSciNet  Google Scholar 

  5. Bi H, Li N, Guan H, Lu D, Yang L (2019) A multi-scale conditional generative adversarial network for face sketch synthesis. In: IEEE international conference on image processing. IEEE, pp 3876–3880

  6. Brunet JP, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci 101(12):4164–4169

    Article  Google Scholar 

  7. Cai D, He X, Han J, Huang T (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans pattern Anal Mach Intell 33(8):1548–1560

    Article  Google Scholar 

  8. Cho MA, Kim T, Kim IJ, Lee S (2021) Relational deep feature learning for heterogeneous face recognition. IEEE Trans Inf Forensic Secur 16:376–388

    Article  Google Scholar 

  9. Ding CHQ, Li T, Jordan MI (2009) Nonnegative matrix factorization for combinatorial optimization: spectral clustering, graph matching, and clique finding. In: IEEE international conference on data mining. IEEE, pp 183–192

  10. Fan DP, Zhang S, Wu Y, Cheng MM, Ren B, Ji R, Rosin P (2019) Scoot: a perceptual metric for facial sketches. In: IEEE international conference on computer vision, pp 1–11

  11. Feng G, Zhang W, Wang C, Luo Z (2017) GNMF revisited: joint robust k-NN graph and reconstruction-based graph regularization for image clustering. In: International conference on artificial neural networks. Springer, Cham, pp 442–449

  12. Graham DB, Allinson NM (1998) Characterising virtual eigensignatures for general purpose face recognition. In: Face recognition. Springer, Berlin, pp 446–456

  13. Guan N, Huang X, Long L, Luo Z, Xiang Z (2012) Graph based semi-supervised non-negative matrix factorization for document clustering. In: International conference on machine learning & applications. IEEE, pp 404–408

  14. Hao YJ, Gao YL, Hou MX, Dai LY, Liu JX (2019) Hypergraph regularized discriminative nonnegative matrix factorization on sample classification and co-differentially expressed gene selection. Complexity 2019:1–12

    Article  Google Scholar 

  15. Huang Y, Wang Y, Tai Y, Liu X, Shen P, Li S, Li J, Huang F (2020) Curricularfface: adaptive curriculum learning loss for deep face recognition. In: International conference on computer vision and pattern recognition, pp 1–10

  16. Huang S, Xu Z, Fei W (2017) Nonnegative matrix factorization with adaptive neighbors. In: International joint conference on neural networks. IEEE, pp 486–493

  17. Jia Y, Kwong S, Hou J, Wu W (2020) Semi-supervised nonnegative matrix factorization with dissimilarity and similarity regularization. IEEE Trans Neural Netw Learn Syst 31(7):2510–2521

    MathSciNet  Google Scholar 

  18. Jin H, Nie F, Huang H, Ding C (2014) Robust manifold nonnegative matrix factorization. ACM Trans Knowl Discov Data 8(3):1–21

    Article  Google Scholar 

  19. Kong D, Ding CHQ, Huang H (2011) Robust nonnegative matrix factorization using l21-norm. In: ACM international conference on information & knowledge management, pp 673–682

  20. Lee D, Seung H (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  Google Scholar 

  21. Lee D, Seung H (2001) Algorithms for non-negative matrix factorization. In: Advances in neural information processing systems, pp 556–562

  22. Lee H, Yoo J, Choi S (2010) Semi-supervised nonnegative matrix factorization. IEEE Sig Process Lett 17(1):4–7

    Article  Google Scholar 

  23. Li S, Hou X, Zhang H, Cheng Q (2001) Learning spatially localized, parts-based representation. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 207–212

  24. Li CG, You C, Vidal R (2017) Structured sparse subspace clustering: a joint affinity learning and subspace clustering framework. IEEE Trans Image Process 26(6):2988–3001

    Article  MathSciNet  Google Scholar 

  25. Ling X, Hao D, Wei J, Tang K (2017) Nonnegative matrix factorization by joint locality-constrained and l21-norm regularization. Multimed Tools Appl 77(7):1–20

    Google Scholar 

  26. Liu JX, Wang D, Gao YL, Zheng CH, Yu J (2018) Regularized non-negative matrix factorization for identifying differential genes and clustering samples: a survey. IEEE/ACM Trans Comput Biol Bioinforma 15(3):974–987

    Article  Google Scholar 

  27. Liu H, Wu Z, Cai D, Huang TS (2011) Constrained nonnegative matrix factorization for image representation. IEEE Trans Pattern Anal Mach Intell 34(7):1299–1311

    Article  Google Scholar 

  28. Logothetis N, Sheinberg D (1996) Visual object recognition. Ann Rev Neurosci 19(1):577–621

    Article  Google Scholar 

  29. Long X, Lu H, Yong P, Li W (2014) Graph regularized discriminative non-negative matrix factorization for face recognition. Multimed Tools Appl 72(3):2679–2699

    Article  Google Scholar 

  30. Lu G, Wang Y, Zou J (2016) Low rank matrix factorization with adaptive graph regularizer. IEEE Trans Image Process 25(5):2196–2205

    Article  MathSciNet  Google Scholar 

  31. Palmer S (1977) Hierarchical structure in perceptual representation. Cogn Psychol 9(4):441–474

    Article  Google Scholar 

  32. Peng C, Zhao K, Hu Y, Cheng J, Cheng Q (2017) Robust graph regularized nonnegative matrix factorization for clustering. ACM Trans Knowl Discov Data 11(3):1–30

    Article  Google Scholar 

  33. Petersen KB, Pedersen MS (2008) The matrix cookbook. http://matrixcookbook.com, pp 1–71

  34. Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: IEEE workshop on applications of computer vision. IEEE, pp 138–142

  35. Shen XY, Zhang X, Lan L, Liao Q, Luo ZG (2019) Another robust NMF: rethinking the hyperbolic tangent function and locality constraint. IEEE Access 7:31089–31102

    Article  Google Scholar 

  36. Shuicheng Y, Dong X, Benyu Z, Hong-Jiang Z, Qiang Y, Stephen L (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  37. Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618

    Article  Google Scholar 

  38. Teng Y, Qi S, Yin D, Xu L, Wei Q, Yan K (2017) Semi-supervised nonnegative matrix factorization with commonness extraction. Neural Process Lett 45(3):1063–1076

    Article  Google Scholar 

  39. Vavasis SA (2010) On the complexity of nonnegative matrix factorization. SIAM J Optim 20(3):1364–1377

    Article  MathSciNet  Google Scholar 

  40. Wachsmuth E, Oram M, Perrett D (1994) Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. Cereb Cortex 4(5):509–522

    Article  Google Scholar 

  41. Wang YX, Zhang YJ (2013) Nonnegative matrix factorization: a comprehensive review. IEEE Trans Knowl Data Eng 25(6):1336–1353

    Article  MathSciNet  Google Scholar 

  42. Wen J, Zheng T, Liu X, Wei L (2013) Neighborhood preserving orthogonal PNMF feature extraction for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 6(2):759–768

    Article  Google Scholar 

  43. Wu B, Wang E, Zhen Z, Wei C, Xiao P (2018) Manifold NMF with l21 norm for clustering. Neurocomputing 273:78–88

    Article  Google Scholar 

  44. Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization. In: ACM SIGIR conference on research and development in informaion retrieval, pp 267–273

  45. Yan J, Li C, Li Y, Cao G (2018) Adaptive discrete hypergraph matching. IEEE Trans Cybern 48(2):765–779

    Article  Google Scholar 

  46. Yang S, Hou C, Zhang C, Wu Y, Weng S (2013) Robust non-negative matrix factorization via joint sparse and graph regularization. In: International joint conference on neural networks. IEEE, pp 1–5

  47. Yi Y, Wang J, Zhou W, Zheng C, Qiao S (2020) Non-negative matrix factorization with locality constrained adaptive graph. IEEE Trans Circ Syst Video Technol 30(2):427–441

    Article  Google Scholar 

  48. Zhang Q, Li B (2010) Discriminative K-SVD for dictionary learning in face recognition. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 2691–2698

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China Grant (No. 61906098, No. 61701258, No. 61872190, No. 61906099, No.61972210), Natural Science Foundation of the Jiangsu Higher Education Institutions of China Grant (No. 18KJB520034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhong Long.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: : (Proof of Theorem)

Appendix: : (Proof of Theorem)

In the process of theorem proving, the relevant knowledge of matrix calculation can refer to reference book [33]. Due to the use of more knowledge points, this paper will not elaborate in detail for matrix calculation.

In order to prove Theorem, we need to show that O1 is non-increasing under the updating steps in (25), (26), (27) and (28). For the objective function O1, we need to fix H, C and A if we update W, so, the first term of O1 exists. Similarly, we need to fix W, H and A if we update C, the second term of O1 exists. If we update A, we need to fix W, C and H, the fourth term of O1 exists. Therefore, we have exactly the same update formula for W, C and A in RAGDNMF as in the original NMF. Thus, we can use the convergence proof of NMF to show that O1 is nonincreasing under the update step in (25), (27) and (28). These details can be found in [21].

Hence, we only need to prove that O1 is non-increasing under the updating step in (26). We follow the similar process depicted in [21]. Our proof make use of an auxiliary function and give the definition of the auxiliary function.

Definition 1

\(G\left (h, h^{\prime }\right )\) is an auxiliary function of F(h) if the following conditions are satisfied.

$$ G(h,h^{\prime})\geq F(h),~~~~ G(h,h)=F(h) $$
(29)

The above auxiliary function is very important because of the following lemma.

Lemma 1

If G is an auxiliary function of F, then F is non-increasing under the update

$$ h^{(t+1)}=\underset{h}{\arg\min} G\left( h, h^{(t)}\right) $$
(30)

Proof

\(F\left (h^{(t+1)}\right )\leq G\left (h^{(t+1)}, h^{(t)}\right )\leq G\left (h^{(t)}, h^{(t)}\right )=F\left (h^{(t)}\right )\)

Now, we show that the update step for H in (26) is exactly the update in (30) with a proper auxiliary function.

Considering any element hab in H, we use Fab to denote the part of O1 which is only relevant to hab. It is easy to obtain the following derivatives.

$$ F_{ab}^{\prime}=\left( \frac{\partial O_{1}}{\partial\mathbf{H}}\right)_{ab}=\left[2\mathbf{W}^{T}(\mathbf{W}\mathbf{H}\mathbf{D}-\mathbf{X}\mathbf{D})+2\lambda\mathbf{H}(\mathbf{Q}-\mathbf{P})+2\gamma\mathbf{A}^{T}(\mathbf{A}\mathbf{H}\mathbf{F}-\mathbf{S}\mathbf{F}) \right]_{ab} $$
(31)
$$ F_{ab}^{\prime\prime}=2\left( \mathbf{W}^{T}\mathbf{W}\mathbf{D}\right)_{aa}+2\lambda\mathbf{Q}_{bb}-2\lambda\mathbf{P}_{bb}+2\gamma\left( \mathbf{A}^{T}\mathbf{A}\mathbf{F}\right)_{aa} $$
(32)

It is enough to show that each Fab is nonincreasing under the update step of (26) because our update is essentially element-wise. Consequently, we introduce the following lemma. □

Lemma 2

Function

$$ \begin{array}{@{}rcl@{}} G\left( h,h_{ab}^{(t)}\right)&=&F_{ab}\left( h_{ab}^{(t)}\right)+F_{ab}^{\prime}\left( h_{ab}^{(t)}\right)\left( h-h_{ab}^{(t)}\right)\\ &&+\frac{\left( \mathbf{W}^{T}\mathbf{W}\mathbf{H}\mathbf{D}+\gamma\mathbf{A}^{T}\mathbf{A}\mathbf{H}\mathbf{F}+\lambda\mathbf{H}\mathbf{Q}\right)_{ab}}{h_{ab}^{(t)}}\left( h-h_{ab}^{(t)}\right)^{2} \end{array} $$
(33)

is an auxiliary function of Fab.

Proof

We only need to prove that \(G\left (h,h_{ab}^{(t)}\right )\geq F_{ab}(h)\) because G(h,h) = Fab(h) is obvious. Therefore, we first consider the Taylor series expansion of Fab(h).

$$ \begin{array}{@{}rcl@{}} F_{ab}(h)&=&F_{ab}\left( h_{ab}^{(t)}\right)+F_{ab}^{\prime}\left( h_{ab}^{(t)}\right)\left( h-h_{ab}^{(t)}\right)+\left[\left( \mathbf{W}^{T}\mathbf{W}\mathbf{D}\right)_{aa}\right.\\ &&\left.+\lambda\mathbf{Q}_{bb}-\lambda\mathbf{P}_{bb}+\gamma\left( \mathbf{A}^{T}\mathbf{A}\mathbf{F}\right)_{aa}\right]\left( h-h_{ab}^{(t)}\right)^{2} \end{array} $$
(34)

We compare the (34) with (33) to find that \(G\left (h,h_{ab}^{(t)}\right )\geq F_{ab}(h)\) is equivalent to

$$ \begin{array}{ll} \frac{\left( \mathbf{W}^{T}\mathbf{W}\mathbf{H}\mathbf{D}+\gamma\mathbf{A}^{T}\mathbf{A}\mathbf{H}\mathbf{F}+\lambda\mathbf{H}\mathbf{Q}\right)_{ab}}{h_{ab}^{(t)}}\geq \left( \mathbf{W}^{T}\mathbf{W}\mathbf{D}\right)_{aa}+\lambda\mathbf{Q}_{bb}-\lambda\mathbf{P}_{bb}+\gamma\left( \mathbf{A}^{T}\mathbf{A}\mathbf{F}\right)_{aa} \end{array} $$
(35)

In fact, we have

$$ \begin{array}{@{}rcl@{}} \left( \mathbf{W}^{T}\mathbf{W}\mathbf{H}\mathbf{D}+\gamma\mathbf{A}^{T}\mathbf{A}\mathbf{H}\mathbf{F}\right)_{ab}&=&\sum\limits_{q=1}^{r}\left( \mathbf{W}^{T}\mathbf{W}\right)_{aq}h_{qb}^{(t)}\mathbf{D}_{aq} \\ &&+\gamma\sum\limits_{q=1}^{r}\left( \mathbf{A}^{T}\mathbf{A}\right)_{aq}h_{qb}^{(t)}\mathbf{F}_{aq}\geq \left( \mathbf{W}^{T}\mathbf{W}\right)_{aa}h_{ab}^{(t)}\mathbf{D}_{aa} \\ &&+\gamma\left( \mathbf{A}^{T}\mathbf{A}\right)_{aa}h_{ab}^{(t)}\mathbf{F}_{aa} \end{array} $$
(36)

and

$$ \begin{array}{ll} (\lambda\mathbf{H}\mathbf{Q})_{ab}=\lambda\sum\limits_{j=1}^{n}h_{aj}^{(t)}\mathbf{Q}_{jb}\geq \lambda h_{ab}^{(t)}\mathbf{Q}_{bb}\geq\lambda h_{ab}^{(t)}\mathbf{Q}_{bb}-\lambda h_{ab}^{(t)}\mathbf{P}_{bb} \end{array} $$
(37)

Thus, (35) holds and \(G\left (h,h_{ab}^{(t)}\right )\geq F_{ab}(h)\). We can now demonstrate the convergence of Theorem: □

Proof of Theorem

Replacing \(G\left (h,h_{ab}^{(t)}\right )\) in (30) by (33) results in the following update rule:

$$ \begin{array}{@{}rcl@{}} h_{ab}^{(t+1)}&=&h_{ab}^{(t)}-h_{ab}^{(t)}\frac{F_{ab}^{\prime}\left( h_{ab}^{(t)}\right)}{2\left( \mathbf{W}^{T}\mathbf{W}\mathbf{H}\mathbf{D}+\gamma\mathbf{A}^{T}\mathbf{A}\mathbf{H}\mathbf{F}+\lambda\mathbf{H}\mathbf{Q}\right)_{ab}}\\ &=&h_{ab}^{(t)}\frac{\left( \gamma\mathbf{A}^{T}\mathbf{S}\mathbf{F}+\mathbf{W}^{T}\mathbf{X}\mathbf{D}+\lambda\mathbf{H}\mathbf{P}\right)_{ab}}{\left( \mathbf{W}^{T}\mathbf{W}\mathbf{H}\mathbf{D}+\gamma\mathbf{A}^{T}\mathbf{A}\mathbf{H}\mathbf{F}+\lambda\mathbf{H}\mathbf{Q}\right)_{ab}} \end{array} $$
(38)

Since (33) is an auxiliary function and Fab is nonincreasing under this update rule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, X., Xiong, J. & Chen, L. Robust automated graph regularized discriminative non-negative matrix factorization. Multimed Tools Appl 80, 14867–14886 (2021). https://doi.org/10.1007/s11042-020-10410-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10410-w

Keywords

Navigation