Skip to main content
Log in

PCNN double step firing mode for image edge detection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

A Correction to this article was published on 25 June 2022

This article has been updated

Abstract

Pulse-coupled Neural Network (PCNN) is a third-generation artificial neural network that requires no training. Neurons in PCNN have two pulse burst modes: firing mode and fire-extinguishing mode. A lot of research has been conducted on achieving image segmentation using the fire-extinguishing mode, yet remains deficient on the characteristics and applications of the firing mode. Through analysis of the firing process of PCNN, we find that the network that works only on the firing mode has the characteristic of image edge detection. Then, we give a mathematical expression for the neuron firing time, and, using the expression, propose an image edge detection algorithm based on the characteristic of PCNN double step firing. Then, we analyze the parameter constraints for achieving PCNN double step firing and provide a method for the self-adaptive setting of the network parameters. To achieve the best edge detection, we conduct mathematical analysis on the relationship between edge detection performance and neighbor coupling, and provide a neighbor template structure and the setting of its values. Our results show that the proposed algorithm can obtain smooth and unbroken single pixels edges, and has nice robustness and efficiency for various kinds of images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

References

  1. Abdou IE, Pratt WK (1979) Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc IEEE 67(5):753–763. https://doi.org/10.1109/PROC.1979.11325

    Article  Google Scholar 

  2. Alam MS, Iftekharuddin KM, Karim MA (2020) Polarization-encoded optical shadow casting: edge detection using Roberts operator. Microwave Optical Technol Lett 6(3):190–193. https://doi.org/10.1002/mop.4650060312

    Article  Google Scholar 

  3. Biswas R, Sil J (2012) An improved canny edge detection algorithm based on Type-2 fuzzy sets, the 2nd international conference on computer, communication, control and information technology( C3IT-2012). ES 4:820–824. https://doi.org/10.1016/j.protcy.2012.05.134

    Article  Google Scholar 

  4. Chacon M, Prieto RC, Sandoval RR (2008) A soft image edge detection approach based on the time matrix of a PCNN, IEEE international joint conference on neural networks, IEEE Xplore. HongKong:463–469. https://doi.org/10.1109/IJCNN.2008.4633833

  5. Chang C (2006) Contextual-based Hopfield neural network for medical image edge detection, IEEE International Conference on Multimedia & Expo. IEEE https://doi.org/10.1109/ICME.2004.1394374

  6. Chen R, Luo Y (2012) An Improved License Plate Location Method Based On Edge Detection. Physics Procedia 24(Part B):1350–1356. https://doi.org/10.1016/j.phpro.2012.02.201

    Article  Google Scholar 

  7. Deng X (2012) Image edge detection method based on PCNN. Autom Instrument (03):134–135+138. https://doi.org/10.3969/j.issn.1001-9227.2012.03.054

  8. Deng X, Ma Y (2012) PCNN model automatic parameters determination and its modified model. Acta Electron Sin 40(5):955–964. https://doi.org/10.3969/j.issn.0372-2112.2012.05.015

    Article  MathSciNet  Google Scholar 

  9. Deng X, Ma Y (2014) PCNN model analysis and its automatic parameters determination in image segmentation and edge detection. Chin J Electron 23(1):97–103. https://doi.org/10.3233/JAE-131740

    Article  Google Scholar 

  10. Deng X, Ma Y, Dong M (2016) A new adaptive filtering method for removing salt and pepper noise based on multilayered PCNN. Pattern Recogn Lett 79:8–17. https://doi.org/10.1016/j.patrec.2016.04.019

    Article  Google Scholar 

  11. Deng X, Ma Y, Yan C (2020) PCNN Mechanism and Its Parameter Settings. IEEE Trans Neural Networks Learn Syst 31(2):488–501. https://doi.org/10.1109/TNNLS.2019.2905113

    Article  Google Scholar 

  12. Eckhorn R, Reitboeck HJ, Arndt M, … Dicke P (1990) Feature linking via synchronization among distributed assemblies: simulation of results from cat visual cortex[J]. Neural Comput 2(3):293–307

    Article  Google Scholar 

  13. Elaraby WS, Madian AH, Ashour MA (2017) Fractional edge detection based on genetic algorithm, 2017 29th international conference on microelectronics (ICM)

    Google Scholar 

  14. Elons AS, Abull-Ela M, AMF T (2013) Proposed PCNN features quality optimization technique for pose-invariant 3D Arabic sign language recognition. Appl Soft Comput J 13(4):1646–1660. https://doi.org/10.1016/j.asoc.2012.11.036

    Article  Google Scholar 

  15. He Y, Zeng Y, Chen H (2018) Research on improved edge extraction algorithm of rectangular piece. Int J Modern Physics C 29(1):1–11. https://doi.org/10.1142/S0129183118500079

    Article  Google Scholar 

  16. Johnson JL, Padgett ML (1999) PCNN models and applications[J]. IEEE Trans Neural Networks 10(3):480–498

    Article  Google Scholar 

  17. Kozik R, Choraś M, Ficco M, Palmieri F (2018) A scalable distributed machine learning approach for attack detection in edge computing environments. J Parall Distrib Comput 119(SEP.):18–26. https://doi.org/10.1016/j.jpdc.2018.03.006

    Article  Google Scholar 

  18. Li W, Zhu X (2005) A new image fusion algorithm based on wavelet packet analysis and PCNN. Int Conf Mach Learn Cybern IEEE 9:5297–5301. https://doi.org/10.1109/ICMLC.2005.1527879

    Article  Google Scholar 

  19. Lin W, Wang J (2018) Edge detection in medical images with quasi high-pass filter based on local statistics. Biomed Signal Process Control 39:294–302

    Article  Google Scholar 

  20. Liu X (2015) S Fang, a convenient and robust edge detection method based on ant colony optimization. Opt Commun 353:147–157. https://doi.org/10.1016/j.optcom.2015.05.019

    Article  Google Scholar 

  21. Liu Y, Cheng M, Hu X (2016) Richer convolutional features for edge detection. IEEE Trans Pattern Anal Mach Intell 41(8):1939–1946. https://doi.org/10.1109/CVPR.2017.622

    Article  Google Scholar 

  22. Lu S, Wang Z, Shen J (2003) Neuro-fuzzy synergism to the intelligent system for edge detection and enhancement. Patt Recogn 36(10):2395–2409. https://doi.org/10.1016/S0031-3203(03)00083-9

    Article  MATH  Google Scholar 

  23. Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond 207(1167):187–217. https://doi.org/10.1098/rspb.1980.0020

    Article  Google Scholar 

  24. Medina-Carnicer R, Munoz-Salinas R, Carmona-Poyato A, Madrid-Cuevas FJ (2012) A novel histogram transformation to improve the performance of thresholding methods in edge detection. Patt Recogn Lett 32(5):676–693

    Article  Google Scholar 

  25. Mohammed MM, Badr A, Abdelhalim MB (2015) Image classification and retrieval using optimized pulse-coupled neural network. Expert Syst Appl 42(11):4927–4936

    Article  Google Scholar 

  26. Orujov F, Maskeliunas R, Damasevicius R (2020) Fuzzy based image edge detection algorithm for blood vessel detection in retinal images. Appl Soft Comput 94:106452. https://doi.org/10.1016/j.asoc.2020.106452

    Article  Google Scholar 

  27. Qu Y, Cui C, Chen S (2005) A fast subpixel edge detection method using Sobel-Zernike moments operator. Image Vis Comput, Image Vision Comput 23(1):11–17. https://doi.org/10.1016/j.imavis.2004.07.003

    Article  Google Scholar 

  28. Qu Z, Xing Y, Song Y (2019) Image Enhancement Based on Pulse Coupled Neural Network in the Nonsubsample Shearlet Transform Domain. Math Probl Eng (PT.5):1–11. https://doi.org/10.1155/2019/2641516

  29. Rajathilagam B, Rangarajan M (2017) Edge detection using G-lets based on matrix factorization by group representations. Pattern Recogn 67:1–15. https://doi.org/10.1016/j.patcog.2017.01.028

    Article  Google Scholar 

  30. Ray K (2013) Unsupervised edge detection and noise detection from a single image. Pattern Recogn 46(8):2067–2077. https://doi.org/10.1016/j.patcog.2013.01.029

    Article  Google Scholar 

  31. Ren W, Liu S, Ma L, … Yang MH (2019) Low-light image enhancement via a deep hybrid network[J]. IEEE Trans Image Process 28:1–1, 4375

  32. Ren W, Pan J, Zhang H et al (2020) Single image Dehazing via multi-scale convolutional neural networks with holistic edges[J]. Int J Comput Vis 128(1):240–259

    Article  Google Scholar 

  33. Shang L, Yi Z (2007) A class of binary images thinning using two PCNNs. Neurocomputing 70(4–6):1096–1101

    Article  Google Scholar 

  34. Sharma B, Mahajan P (2015) Latest trend of variation of EDGE detection and object detection with pixel level variation and their comparison algorithms. Int J Advanc Sci Res 1(9):346–348. https://doi.org/10.1002/gepi.20609

    Article  Google Scholar 

  35. Sheela CJJ, Suganthi G (2020) Morphological edge detection and brain tumor segmentation in magnetic resonance (MR) images based on region growing and performance evaluation of modified fuzzy C-means (FCM) algorithm, multimedia tools and applications, 1–14

  36. Song Y, Ma B, Gao W et al (2019) Medical image edge detection based on improved differential evolution algorithm and Prewitt operator[J]. Acta Microscopica 28(1):30–39

    Google Scholar 

  37. Soni R, Kumar B, Chand S (2019) Text detection and localization in natural scene images based on text awareness score[J]. Appl Intell 49:1376–1405

    Article  Google Scholar 

  38. Sun G, Liu Q, Liu Q, Ji C (2007) A novel approach for edge detection based on the theory of universal gravity. Pattern Recogn 40(10):2766–2775. https://doi.org/10.1016/j.patcog.2007.01.006

    Article  MATH  Google Scholar 

  39. Sun J, Gu D, Chen Y, Zhang S (2004) A multiscale edge detection algorithm based on wavelet domain vector hidden Markov tree model. Pattern Recogn 37(7):1315–1324. https://doi.org/10.1016/j.patcog.2003.11.006

    Article  MATH  Google Scholar 

  40. Tan Y, Zhou D, Zhou D (2009) Color image segmentation and edge detection using unit-linking PCNN and image entropy. Comput Eng Appl 45(12):174–175. https://doi.org/10.1016/j.commatsci.2008.04.030

    Article  Google Scholar 

  41. Tang X, Tao Z, Tang P, Li J (2014) Edge detection method based on PCNN, international computer conference on wavelet active Media Technology & Information Processing. IEEE:169–171. https://doi.org/10.1109/ICCWAMTIP.2014.7073383

  42. Vasavada J, Tiwari S (2013) An edge detection method for grayscale images based on BP feedforward neural network. Int J Comput Appl 67(2):22–28. https://doi.org/10.5120/11368-6627

    Article  Google Scholar 

  43. Verma OP, Hanmandlu M, Kumar P (2011) A novel bacterial foraging technique for edge detection. Pattern Recogn Lett 32(8):1187–1196. https://doi.org/10.1016/j.patrec.2011.03.008

    Article  Google Scholar 

  44. Wang Z, Ma Y, Gu J (2010) Multi-focus image fusion using PCNN. Pattern Recogn 43(6):2003–2016. https://doi.org/10.1016/j.patcog.2010.01.011

    Article  MATH  Google Scholar 

  45. Wu C, Liu Z, Jiang H (2017) Catenary image segmentation using the simplified PCNN with adaptive parameters. Optik - Int J Light Electron Optics 157:914–923. https://doi.org/10.1016/j.ijleo.2017.11.171

    Article  Google Scholar 

  46. Xie S, Tu Z (2017) Holistically-nested edge detection. Int J Comput Vis 125(5):3–18. https://doi.org/10.1007/s11263-017-1004-z

    Article  MathSciNet  Google Scholar 

  47. Yang Y, Fang Y, Huang L (2014) An edge detection method for UAV image based on minimum cross-entropy and simplified PCNN. Electron J Geotech Eng 19:10111–10120

    Google Scholar 

  48. Zhang K, Zhang Y, Wang P (2018) An improved Sobel edge algorithm and FPGA implementation. Procedia Comput Sci 131:243–248. https://doi.org/10.1016/j.procs.2018.04.209

    Article  Google Scholar 

  49. Zhang Y, Wu L, Wang S, Wei G (2010, 1963-1976) Color image enhancement based on HVS and PCNN. ence China Inform ences (10):53. https://doi.org/10.1007/s11432-010-4075-9

  50. Zheng S, Liu J, Tian J (2004) A new efficient SVM-based edge detection method. Pattern Recogn Lett 25(10):1143–1154. https://doi.org/10.1016/j.patrec.2004.03.009

    Article  Google Scholar 

  51. Zhou L, Sun Y, Zheng J (2008) Automated color image edge detection using improved PCNN model. WSEAS Trans Comput 7(4):184–189

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61961037), and the Industrial Support Plan of Education Department of Gansu Province (No. 2021CYZC-30)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Deng.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The citations for reference [46] were missing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Yang, Y., Zhang, H. et al. PCNN double step firing mode for image edge detection. Multimed Tools Appl 81, 27187–27213 (2022). https://doi.org/10.1007/s11042-022-12725-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12725-2

Keywords

Navigation