Skip to main content
Log in

3D face recognition in the Fourier domain using deformed circular curves

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

One of the most significant problems in image and vision applications is the efficient representation of a target image containing a large amount of data with high complexity. The ability to analyze high dimensional signals in a lower dimension without losing their information, has been crucial in the field of image processing. This paper proposes an approach to 3D face recognition using dimensionality reduction based on deformed circular curves, on the shortest geodesic distances, and on the properties of the Fourier Transform. Measured geodesic distances information generates a matrix whose entities are geodesic distances between the reference point and an arbitrary point on a 3D object, and an one-dimensional vector is generated by reshaping the matrix without losing the original properties of the target object. Following the property of the Fourier Transform, symmetry of the magnitude response, the original signal can be analyzed in the lower dimensional space without loss of inherent characteristics. This paper mainly deal with the efficient representation and recognition algorithm using deformed circular curves and the simulation shows promising result for recognition of geometric face information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aldroubi, A., & Grochenig, K. (2001). Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Review, 43(4), 585–620.

    Article  MATH  MathSciNet  Google Scholar 

  • Aouada, D. & Krim, H. (2010). Squigraphs for fine and compact modeling of 3-D shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence, 19(2), 306–321.

  • Ballihi, L., Ben Amor, B., Daoudi, M., Srivastava, A. & Aboutajdine, D. (2012). Boosting 3-D geometric features for efficient face recognition and gender classification. IEEE Transactions on Information Forensic and Security, 7(6), 1766–1799.

  • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373–1396.

    Article  MATH  Google Scholar 

  • Berretti, S., Del Bimbo, A., & Pala, P. (2010). 3D dace recognition using iso-geodesic stripes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2162–2177.

    Article  Google Scholar 

  • Borg, I. & Gronen, P. J. F. (2005). Modern multidimensional scaling–Theory and applications, Springer series in statistics (2nd ed.). New York: Springer-Verlag.

  • Bowyer, K. W., Chang, K., & Flynn, P. (2006). A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding, 101(1), 1–15.

    Article  Google Scholar 

  • De Lathauwer, L., & Vandewalle, J. (2004). Dimensionality reduction in higher-order signal processing and rank-(R1, R2,., RN) reduction in multilinear algebra. Special Issue on Linear Algebra in Signal and Image Processing, 391, 31–55.

    MATH  Google Scholar 

  • Demartines, P., Herault, J. (1997). Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks, 8(1), 148–154.

  • Donoho, D. L. (2006) Compressed sensing. IEEE Transaction on Information Theory, 52(4), 1289–1306.

  • Elad, A., & Kimmel, R. (2003). On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1285–1295.

    Article  Google Scholar 

  • Feng, S., Krim, H., & Kogan, I. A. (2007). 3D face recognition using Euclidean integral invariants signature. In IEEE/SP 14th Workshop on Statistical Signal Processing, 2007. SSP ’07, pp. 156–160

  • Guillamet, D., Schiele B., & Vitria, J. (2002). Analyzing non-negative matrix factorization for image classification. In Proceedings of the 16th International Conference on Pattern Recognition.

  • Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16, 2639–2664.

    Article  MATH  Google Scholar 

  • He, X. & Niyogi, P. (2004). Locality preserving projections. In Proceedings of the NIPS, Advances in Neural Information Processing Systems (Vol. 16). Vancouver: MIT Press.

  • Hou, C., Nie, F., Li, X., Yi, D., & Wu, Y. (2014). Joint embedding learning and sparse regression: A framework for unsupervised feature selection. IEEE Transactions on Cybernetics, 44(6), 793–804.

  • Huang, W. & Yin, H. (2009). Nonlinear dimensionality reduction for face recognition. IDEAL’09 Proceedings of the 10th International Conference on Intelligent Data Engineering and Automated Learning, pp. 424–432.

  • Hyvarinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9, 1483–1492.

    Article  Google Scholar 

  • Jahanbin, S., Choi, H., Liu, Y. & Bovik, A. C. (2008). Three dimensional face recognition using iso-geodesic and iso-depth curves. In 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, 2008. BTAS 2008.

  • Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480.

  • Lee, D., & Krim, H. (2010). 3D surface reconstruction using structured circular light patterns. In ACIVS 2010. Part I, LNCS (Vol. 6474, pp. 279–289).

  • Lee, D., & Krim, H. (2011). A sampling rate for a 2D surface. SSVM, LNCS, 6667,

  • Lee, J. A., Lendasse, A., & Verleysen, M. (2004). Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing, 57, 49–76.

    Article  Google Scholar 

  • Liu, P., Wang, Y., Huang, D., Zhang, Z., & Chen, L. (2013). Learning the spherical harmonic features for 3-D face recognition. IEEE Transactions on Image Processing, 22(3), 914–925.

  • Liu, X., Wang, L., Zhang, J. & Liu, H. (2014). Global and local structure preservation for feature selection. IEEE Transaction on Neural Networks and Learning Systems, 25(6), 1083–1095.

  • Miao S., & Krim, H. (2010). 3D face recognition based on evolution of iso-geodesic distance curves. In 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1134–1137.

  • Mika, S., Ratsch, G., Weston, J., Scholkopf, B. & Muller, K.-R. (1999). Fisher discriminant analysis with kernels, neural networks for signal processing IX. In Proceedings of the 1999 IEEE Signal Processing Society Workshop.

  • Oprea, J. (2007). Differential geometry and its applications (2nd ed.). The Mathematical Association of America (Incorporated): Pearson Education.

  • Roweis, S. T., & Saul L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323–2326.

  • Samir, C., Srivastava, A., & Daoudi, M. (2006). Three-dimensional face recognition using shape of facial curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11), 1858–1863.

    Article  Google Scholar 

  • Saul, L. K., & Roweis, S. T. (2000). An introduction to locally linear embedding. Florham Park, NJ: AT and T.

    Google Scholar 

  • Scholkopf, Bernhard, Smola, Alexander, & Muller, Klaus-Robert. (1997). Kernel principal component analysis, Artificial Neural Networks - ICANN’97. Lecture Notes in Computer Science, 1327, 583–588.

  • Scholkopf, B., Smola, A., & Muller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299–1319.

    Article  Google Scholar 

  • Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

    Article  Google Scholar 

  • Turk, Matthew A. & Pentland, A. P. (1991) . Face recognition using eigenfaces. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–591.

  • Unser, M. (2000). Sampling—50 years after Shannon. Proceedings of the IEEE, 88(4), 569–587.

  • Vasuhi, S., & Vaidehi, V. (2009). Identification of human faces using orthogonal locality preserving projections. In International Conference on Signal Processing Systems.

  • Wang, X., & Paliwal, K. K. (2003). Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition. Pattern Recognition, 36(10), 2429–2439.

    Article  MATH  Google Scholar 

  • Zhang, C., Wang, J., Zhao, N., & Zhang, D. (2004). Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction. Pattern Recognition, 37(2), 325–336.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deokwoo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Krim, H. 3D face recognition in the Fourier domain using deformed circular curves. Multidim Syst Sign Process 28, 105–127 (2017). https://doi.org/10.1007/s11045-015-0334-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0334-7

Keywords

Navigation