Skip to main content
Log in

A novel method for image segmentation using reaction–diffusion model

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

We propose an image segmentation model that is derived from reaction–diffusion equations and level set methods. In our model, a diffusion term is used for regularization of a level set function, and a reaction term has the desired sign property to force the level set function to move up or down and finally identify an object and its background. Our level set function can be initialized to any bounded function (e.g., a constant function). The proposed model can be applied to a wider range of images with promising results, especially for real images that have high noise and blurred boundaries. This study gives a new method for the further investigations of reaction–diffusion equations directly for segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aldo, M., Philippe, C., Bertrand, A., & Christine, F. M. (2008). Cooperation of the partial differential equation methods and the wavelet transform for the segmentation of multivalued images. Signal Processing: Image Communication, 23(1), 14–30.

    Google Scholar 

  • Bini, A. A., & Bhat, M. S. (2014). Despeckling low SNR, low contrast ultrasound images via anisotropic level set diffusion. Multidimensional Systems and Signal Processing, 25, 41–65. doi:10.1007/s11045-012-0184-5.

    Article  MATH  Google Scholar 

  • Catte, F., Lions, P., Morel, J., & Coll, T. (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 29, 182–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T., & Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Chen, Y., Vemuri, B., & Wang, L. (2000). Image denoising and segmentation via nonlinear diffusion. Computers and Mathematics Applications, 39, 131–149.

    Article  MathSciNet  MATH  Google Scholar 

  • Chuang, K. S., Hzeng, H. L., Chen, S., Wu, J., & Chen, T. J. (2006). Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics, 30, 9–15.

    Article  Google Scholar 

  • Crandall, R. (2009). Image segmentation using the Chan–Vese algorithm. ECE 532 Project, Fall.

  • Gao, G., Zhao, L., Zhang, J., Zhou, D., & Huang, J. (2008). A segmentation algorithm for SAR images based on the anisotropic heat diffusion equation. Pattern Recognition, 41, 3035–3043.

    Article  MATH  Google Scholar 

  • Hsu, R. C., Chan, D. Y., Liu, C.-T., & Lai, W.-C. (2012). Contour extraction in medical images using initial boundary pixel selection and segmental contour following. Multidimensional Systems and Signal Processing, 23, 469–498. doi:10.1007/s11045-012-0176-5.

    Article  MathSciNet  MATH  Google Scholar 

  • Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892.

    Article  MATH  Google Scholar 

  • Kimia, B. B., Tannenbaum, A., & Zucker, S. (1995). Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction–diffusion space. International Journal of Computer Vision, 15, 189–224.

    Article  Google Scholar 

  • Li, C., Xu, C., Gui, C., & Fox, M. D. (2005) Level set formulation without re-initialization: A new variational formulation. In Proceedings of IEEE conference on computer vision and pattern recognition, San Diego (Vol. 1, pp. 430–436).

  • Liu, B., Cheng, H. D., Huang, J., Tian, J., Tang, X., & Liu, J. (2010). Probability density difference-based active contour for ultrasound image segmentation. Pattern Recognition, 43, 2028–2042.

    Article  MATH  Google Scholar 

  • Li, C., Xu, C., Gui, C., & Fox, M. D. (2010). Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing, 19(12), 3243–3254.

    Article  MathSciNet  Google Scholar 

  • Morfu, S. (2009). On some applications of diffusion processes for image processing. Physics Letters A, 373, 2438–2444.

    Article  MATH  Google Scholar 

  • Morfu, S., Nofiele, B., & Marquie, P. (2007). On the use of multistability for image processing. Physics Letters A, 367, 192–198.

    Article  MATH  Google Scholar 

  • Nie, F., Wang, Y., Pan, M., Peng, G., & Zhang, P. (2013). Two-dimensional extension of variance-based thresholding for image segmentation. Multidimensional Systems and Signal Processing, 24, 485–501. doi:10.1007/s11045-012-0174-7.

    Article  MathSciNet  MATH  Google Scholar 

  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79, 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  • Pun, T. (1980). A new method for gray-level picture thresholding using the entropy of the histogram. Signal Processing, 2, 223–237.

    Article  Google Scholar 

  • Shattuck, D. W., Sandor-Leahy, S. R., Schaper, K. A., Rottenberg, D. A., & Leahy, R. M. (2001). Magnetic resonance image tissue classification using a partial volume model. Neuroimage, 13, 856–876.

    Article  Google Scholar 

  • Tsai, Y. H., & Osher, S. (2005). Total variation and level set based methods in image science. Acta Numerica, 14, 1–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y., & He, C. (2011). Adaptive level set evolution starting with a constant function. Applied Mathematical Modelling, 36, 3217–3228.

    Article  MathSciNet  MATH  Google Scholar 

  • Weickert, J. (1997). A review of anisotropic diffusion filtering. Scale-Space Theory in Computer Science, 1252, 3–28.

    Google Scholar 

  • Wu, Y., & He, C. (2015). A convex variational level set model for image segmentation. Signal Processing, 106, 123–133.

    Article  Google Scholar 

  • Wu, Z., Zhao, J., Yin, J., & Li, H. (2001). Nonlinear diffusion equations. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Yan, C., Sang, N., & Zhang, T. (2003). Local entropy-based transition region extraction and thresholding. Pattern Recognition Letters, 24(16), 2935–2941.

    Article  Google Scholar 

  • Zhang, K., Zhang, L., Song, H., & Zhou, W. (2010). Active contours with selective local or global segmentation: A new formulation and level set method. Image and Vision Computing, 28, 668–676.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangxi Province (Grant No. 20142BAB217012), the National Natural Science Foundation of China (Grant Nos. 61462032, 61502399 and 61461021), Natural Science Foundation Project of Chongqing CSTC (Grant No. cstc2015jcyjA40039), the Fundamental Research Funds for the Central Universities (XDJK2015C077), and SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, W., He, C., Zhang, Y. et al. A novel method for image segmentation using reaction–diffusion model. Multidim Syst Sign Process 28, 657–677 (2017). https://doi.org/10.1007/s11045-015-0365-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0365-0

Keywords

Navigation