Skip to main content
Log in

A new eigenvector selection strategy applied to develop spectral clustering

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Spectral methods are strong tools that can be used for extraction of the data’s structure based on eigenvectors of constructed affinity matrices. In this paper, we aim to propose some new measurement functions to evaluate the ability of each eigenvector of affinity matrix in data clustering. In the proposed strategy, each eigenvector’s elements are clustered by traditional fuzzy c-means algorithm and then informative eigenvectors selection is performed by optimization of an objective function which defined based on three criterions. These criterions are the compactness of clusters, distance between clusters and stability of clustering to evaluate each eigenvector based on considering the structure of clusters which placed on. Finally, Lagrange multipliers method is used to minimize the proposed objective function and extract the most informative eigenvectors. To indicate the merits of our algorithm, we consider UCI Machine Learning Repository databases, COIL20, YALE-B and PicasaWeb as benchmark data sets. Our simulation’s results confirm the superior performance of the proposed strategy in developing spectral clustering compared to conventional clustering methods and recent eigenvector selection based algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bach, F. R., & Jordan, M. I. (2006). Learning spectral clustering, with application to speech separation. J. Mach. Learn., 7, 1963–2001.

    MathSciNet  MATH  Google Scholar 

  • Bezdek, J. C. (1976). A physical interpretation of Fuzzy ISODATA. IEEE Trans. SMC, 6, 387–390.

    MathSciNet  MATH  Google Scholar 

  • Costa, J., & Hero, A. (2004). Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. Signal Process., 52, 2210–2221.

    Article  MathSciNet  Google Scholar 

  • Driessche, R. V., & Roose, D. (1995). An improved spectral bisection algorithm and its application to dynamic load balancing. Parallel Comput., 21, 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslov. Math. J., 23, 298–305.

    MathSciNet  MATH  Google Scholar 

  • Fukunaga, K. (1990). Introduction to statistical pattern recognition. San Diego: Academic Press Professional Inc.

    MATH  Google Scholar 

  • Georghiades, A., Belhumeur, P., & Kriegman, D. (2001). From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell., 23(6), 643–660.

    Article  Google Scholar 

  • He, X., & Niyogi, P. (2003). Locality preserving projections. In Proceedings of Advances in Neural Information Processing Systems, 16 (p. 153).

  • Hendrickson, B., & Leland, R. (1995). An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. Sci. Comput., 16, 452–469.

    Article  MathSciNet  MATH  Google Scholar 

  • Higham, D. J. (2007). Spectral clustering and its use in bioinformatics. J. Comput. Appl. Math., 204, 25–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Jimenez, L. O., & Landgrebe, D. A. (1997). Supervised classification in high-dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. Syst. Man Cybern., 28(1), 39–54.

    Article  Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis. New York: Springer.

    MATH  Google Scholar 

  • Lee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction. New York, NY: Springer.

    Book  MATH  Google Scholar 

  • Munkres, J. (1957). Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math., 5(1), 32–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Nene, S. A., Nayar, S. K. & Murase, H. (1996). Columbia object image library (COIL-20). Department of Computer Science, Columbia University, New York, Technical Report CUCS-005-96.

  • Ng, A. Y., Jordan, I., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In Proceedings of Advances in Neural Information Processing Systems (pp. 849–856).

  • Nie, F., Zeng, Z., Tsang, I. W., & Xu, D. (2011). Spectral embedded clustering: A framework for in-sample and out-of-sample spectral clustering. IEEE Trans. Neural Netw., 22(11), 1796–1809.

    Article  Google Scholar 

  • Rebagliati, N., & Verri, A. (2011). Spectral clustering with more than K eigenvectors. Neurocomputing, 74, 1391–1401.

    Article  Google Scholar 

  • Saul, L. K., Weinberger, K. Q., Ham, J. H., Sha, F., & Lee. D. D. (2006). Spectral methods for dimensionality reduction. In O. Chapelle, B. Schoelkopf, & A. Zien (Eds.), Semisupervised learning. Cambridge, MA: The MIT Press.

  • Schölkopf, B. (1996). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput., 10, 1299–1319.

    Article  Google Scholar 

  • Scott, G. L., & Longuet-Higgins, H. C. (1990). Feature grouping by relocalisation of eigenvectors of the proxmity matrix. In Presented at the British Machine Vision Conference.

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 22, 888–905.

    Article  Google Scholar 

  • van der Maaten, L. J. P., & Hinton, G. E. (2008). Visualizing data using t-SNE. J. Mach. Learn. Res., 9, 2431–2456.

    MathSciNet  MATH  Google Scholar 

  • Weiss, Y. (1999). Segmentation using eigenvectors: A unifying view. In International Conference on Computer Vision.

  • Windham, M. P. (1982). Cluster validity for the fuzzy c-means clustering algorithm. IEEE Trans. PAMI, 4, 357–363.

    Article  Google Scholar 

  • Xiang, T., & Gong, S. (2008). Spectral clustering with eigenvector selection. Pattern Recognit., 41, 1012–1029.

    Article  MATH  Google Scholar 

  • Ye, J., Zhao, Z., & Wu, M. (2007). Discriminative K-means for clustering. In Proceedings of Neural Information Processing Systems, Vancouver, BC, Canada, (pp. 1649–1656).

  • Zhang, Z., & Jordan, M. I. (2008). Multiway spectral clustering: A margin-based perspective. Stat. Sci., 23, 383–403.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, F. (2010). Spectral clustering with eigenvector selection based on entropy ranking. Neurocomputing, 73, 1704–1717.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Azar, F.T. A new eigenvector selection strategy applied to develop spectral clustering. Multidim Syst Sign Process 28, 1227–1248 (2017). https://doi.org/10.1007/s11045-016-0391-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0391-6

Keywords

Navigation