Skip to main content
Log in

A fast multichannel SAR raw data simulator of clutter and moving targets

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Accessibility of a fast and accurate multichannel synthetic aperture radar raw data generator of stationary clutter and moving targets has high importance, especially in the application of ground moving target indication. In this paper, a fast four-stage algorithm for generating the raw data of each channel stationary clutter and moving targets, has been proposed respectively in the frequency and the hybrid time–frequency domain. Using this simulator, in different conditions in terms of target motion speed, acceleration and direction, for each of the channels, after generating the raw data, its final image has been extracted by the range-Doppler algorithm. Then, using clutter suppression techniques such as DPCA, ATI and hybrid DPCA–ATI, the multichannel SAR final image has been obtained in ideal and nonideal conditions. Finally, the obtained images of the first channel have been studied using the extracted formulas for predicting the effects of target motion parameters on the SAR images as well as analyzing the multichannel SAR final image. The results show that the proposed algorithm for generating the raw data of each channel stationary clutter and moving targets has better performance in terms of speed and accuracy than the other existing simulators and the proposed multichannel SAR simulation method has high quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Baumgartner SV, Krieger G (2014) Chapter 18-multichannel SAR for ground moving target indication. Academic Press Library in Signal Processing 2(10):911–986.

  • Buddendick, H., & Eibert, T. F. (2011). Bistatic image formation from shooting and bouncing rays simulated current distributions. Progress In Electromagnetics Research, 19, 1–18.

    Article  Google Scholar 

  • Chan, Y. K., & Koo, V. C. (2008). An introduction to synthetic aperture radar. Progress In Electromagnetics Research B, 2, 27–60.

    Article  Google Scholar 

  • Chang, Y. L., Chiang, C. Y., & Chen, K. S. (2011). SAR image simulation with application to target recognition. Progress In Electromagnetics Research, 119, 35–57.

    Article  Google Scholar 

  • Chapin, E., & Chen, C. W. (2008). Along-track interferometry for ground moving target indication. IEEE Aerospace and Electronic Systems Magazine, 23(6), 19–24.

    Article  Google Scholar 

  • Cumming, I. G., & Wong, F. H. (2005). Digital processing of synthetic aperture radar data: Algorithms and implementations. Norwood: Artech House.

    Google Scholar 

  • Dogan, O., & Kartal, M. (2011). Efficient strip-mode SAR raw-data simulation of fixed and moving targets. Geoscience and Remote Sensing Letters, 8(5), 884–888.

    Article  Google Scholar 

  • Entzminger, J. N. (1999). JointSTARS and GMTI: Past, present and future. IEEE Transactions on Aerospace and Electronic Systems, 35(2), 748–761.

    Article  Google Scholar 

  • Franceschetti, G., Guida, R., Iodice, A., Riccio, D., & Ruello, G. (2004). Efficient simulation of hybrid stripmap/spotlight SAR raw signals from extended scenes. IEEE Transactions on Geoscience and Remote Sensing, 42(11), 2385–2396.

    Article  Google Scholar 

  • Franceschetti, G., Iodice, A., Perna, S., & Riccio, D. (2006). Efficient simulation of airborne SAR raw data of extended scenes. IEEE Transactions on Geoscience and Remote Sensing, 44(10), 2851–2860.

    Article  Google Scholar 

  • Hou, Y., Wang, J., Liu, X., Wang, K., & Gao, Y. (2014). An automatic SAR–GMTI algorithm based on DPCA. In Geoscience and Remote Sensing Symposium.

  • Jin, Y. Q. (2010). Polarimetric scattering modeling and information-retrieval of SAR remote sensing—A review of FDU work. Progress In Electromagnetics Research, 104, 333–384.

    Article  Google Scholar 

  • Khwaja, A. S., Ferro-Famil, L., & Pottie, E. (2006). SAR raw data generation using inverse SAR image formation algorithms. In Proceedings on International Geoscience and Remote Sensing Symposium

  • Kwag, Y. K., Jung, J. H., & Jung, C.H. (2009). Simulation of dual-channel SAR-GMTI for velocity estimation and compensation. In Geoscience and Remote Sensing Symposium

  • Lim, S. H., Han, J. H., Kim, S. Y., & Myung, N. H. (2010). Azimuth beam pattern synthesis for airborne SAR system optimization. Progress In Electromagnetics Research, 106(5), 295–309.

    Article  Google Scholar 

  • Liu, Q., Hong, W., Tan, W. X., Lin, Y., Wang, Y., & Wu, Y. (2011). An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging. Progress In Electromagnetics Research, 119, 155–170.

    Article  Google Scholar 

  • Livingstone, C., & Thompson, A. (2004). The moving object detection. Canadian Journal of Remote Sensing, 30(3), 355–368.

    Article  Google Scholar 

  • Maori, D. C., Klare, J., & Ender, J. H. G. (2008). Wide-area traffic monitoring with the SAR/GMTI system PAMIR. IEEE Transactions on Geoscience and Remote Sensing, 46(10), 3019–3030.

    Article  Google Scholar 

  • Mittermayer, J., & Runge, H. (2003). Conceptual studies for exploiting the terraSAR-X. In Geoscience and Remote Sensing Symposium

  • Mori, A., & Vita, F. D. (2004). A time-domain raw signal simulator for interferometric SAR. IEEE Transactions on Geoscience and Remote Sensing, 42(9), 1811–1817.

    Article  Google Scholar 

  • Qiu, X., Hu, D., Zhou, L., & Ding, C. (2010). A bistatic SAR raw data simulator based on inverse w-k algorithm. IEEE Transations on Geoscience and Remote Sensing, 48(3), 1540–1547.

    Article  Google Scholar 

  • Sikaneta, I. C., & Gierull, H. C. (2012). Adaptive CFAR for spaced-based multichannel SAR-GMTI. IEEE Transations on Geoscience and Remote Sensing, 50(12), 5004–5013.

    Article  Google Scholar 

  • Wang, Y., Zhang, Z. M., & Deng, Y. K. (2008). Squint spotlight SAR raw signal simulation in the frequency domain using optical principles. IEEE Transations on Geoscience and Remote Sensing, 46(8), 2208–2215.

    Article  Google Scholar 

  • Wei, S. J., Zhang, X. L., & Sh, J. (2011). Linear array SAR imaging via compressed sensing. Progress In Electromagnetics Research, 117, 299–319.

    Article  Google Scholar 

  • Yang, L., Yu, W. D., Lou, Y. H., & Zhengl, S. C. (2013). Efficient strip-mode SAR raw data simulator of extended scenes included moving targets. Progress In Electromagnetics Research, 53, 187–203.

    Article  Google Scholar 

  • Zhang, H., & Yang, R. (2006). Simulation of multichannel SAR raw data based on real single channel SAR data. In Geoscience and Remote SensingSymposium

  • Zhang, H., Yang, R., & Qi, H. (2008). Real extended scene and moving target multichannel SAR raw signal simulation. Journal of Electronics (China), 2(25), 179–185.

    Article  Google Scholar 

  • Zhang, M., Zhao, Y. W., Chen, H., & Jiang, W. Q. (2011). SAR imaging simulation for composite model of ship on dynamic ocean scene. Progress In Electromagnetics Research, 113, 395–412.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Mahmoudi, A. A fast multichannel SAR raw data simulator of clutter and moving targets. Multidim Syst Sign Process 28, 1367–1391 (2017). https://doi.org/10.1007/s11045-016-0413-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0413-4

Keywords

Navigation