Skip to main content
Log in

Lossy compression of satellite images with low impact on vegetation features

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

A novel technique for lossy compression of satellite images aiming at decreasing the impact on vegetation features is presented in this paper. First, the satellite image bands are divided into two groups; the first group contains the most significant bands for vegetation feature extraction (i.e., vegetation group), and the other contains the rest of the spectral bands. After that, a new band ordering algorithm is applied that improves compression performance. The proposed compression technique is based on a new rate control scheme in which the vegetation group is encoded at a higher bit rate than that for the remaining group. We have selected two of the most common indices to assess the impact of lossy compression on the vegetation features in the satellite images; the Normalized Difference Vegetation Index and the Normalized Difference Water Index. The study is performed on several satellite images, where multispectral images are selected from a Landsat ETM\(+\) satellite, and hyperspectral images are selected from an Airborne Visible/Infrared Imaging Spectrometer satellite. The experimental results show that the proposed technique is more effective than other traditional compression techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Auli-Llinas, F. (2014). BOI codec. http://www.deic.uab.cat/~francesc/software/boi.

  • Auli-Llinas, F., & Serra-Sagrista, J. (2007). Low complexity JPEG2000 rate control through reverse subband scanning order and coding passes concatenation. IEEE Signal Processing Letters, 14(4), 251–254. doi:10.1109/LSP.2006.884900.

  • Auli-Llinas, F., Serra-Sagrista, J., Monteagudo-Pereira, J. L., & Bartrina-Rapesta, J. (2006). Efficient rate control for JPEG2000 coder and decoder. Presented at the Proc. IEEE Data Compression Conference, pp. 282–291.

  • Blanes, I., Magli, E., & Serra-Sagristà, J. (2014). A tutorial on image compression for optical space imaging systems. IEEE Geoscience and Remote Sensing Magazine, 2(3), 8–26.

    Article  Google Scholar 

  • Blue Book. (2005). Consultative Committee for Space Data Systems (CCSDS), Image Data Compression CCSDS 122.0-B-1, ser. Blue Book, Nov. 2005. http://public.ccsds.org/publications/archive/122x0b1c3.pdf.

  • Carvajal, G., Penna, B., & Magli, E. (2008). Unified lossy and nearlossless hyperspectral image compression based on JPEG2000. IEEE Geoscience and Remote Sensing Letters, 5(4), 593–597.

    Article  Google Scholar 

  • Cohen, A., Daubechies, I., & Feauveau, J. C. (1992). Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 45(5), 485–560.

    Article  MathSciNet  MATH  Google Scholar 

  • Consultative Committee for Space Data Systems. http://www.ccsds.org.

  • Dennison, P. E., Roberts, D. A., Peterson, S. H., & Rechel, J. (2005). Use of normalized water index for monitoring live fuel moisture. International Journal of Remote Sensing, 26, 1035–1042.

    Article  Google Scholar 

  • Draper, C., Reichle, R., de Jeu, R., Naeimi, V., Parinussa, R., & Wagner, W. (2013). Estimating root mean square errors in remotely sensed soil moisture over continental scale domains (RMSE). Remote Sensing of Environment, 137, 288–298.

    Article  Google Scholar 

  • Du, Q., & Fowler, J. E. (2007). Hyperspectral image compression using JPEG2000 and principal component analysis. IEEE Geoscience and Remote Sensing Letters, 4(2), 201–205.

    Article  Google Scholar 

  • Gao, B. (1996). NDWI—A Normalized Difference Water Index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.

    Article  Google Scholar 

  • García-Vílchez, F., Muñoz-Marí, J., Zortea, M., Blanes, I., González-Ruiz, V., Camps-Valls, G., et al. (2011). On the impact of lossy compression on hyperspectral image classification and unmixing. IEEE Geoscience and Remote Sensing Letters, 8(2), 253–257.

    Article  Google Scholar 

  • Hagag, A., Amin, M., & Abd El-Samie, F. E. (2013). Simultaneous denoising and compression of multispectral images. Applied Remote Sensing (JARS), SPIE, 7(1), 17.

    Google Scholar 

  • Hagag, A., Amin, M., & Abd El-Samie, F. E. (2015). Multispectral image compression with band ordering and wavelet transforms. Signal, Image and Video Processing, 9(4), 769–778.

    Article  Google Scholar 

  • ITT VIS. 2008. ITT VIS, ENVI 4.5 User’s Guide, Software Manual, ITT Visual Information Solutions (ITT VIS), Boulder (CO), USA. http://www.ittvis.com/envi/.

  • Jamali, S., Seaquist, J., Eklundh, L., & Ardö, J. (2014). Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sensing of Environment, 141, 79–89.

    Article  Google Scholar 

  • JPEG. (2000). Part 2, 2000—Extensions. ISO/IEC Standard, 15444-2, 2000.

  • Kaarna, A., Toivanen, P., & Keränen, P. (2006). Compression and classification methods for hyperspectral images. Pattern Recognition and Image Analysis, 16(3), 413–424.

    Article  Google Scholar 

  • Licciardi, G., Vivone, G., Dalla Mura, M., Restaino, R., & Chanussot, J. (2015). Multi-resolution analysis techniques and nonlinear PCA for hybrid pansharpening applications. Multidimensional Systems and Signal Processing. doi:10.1007/s11045-015-0359-y.

  • Marcellin, M., Lepley, M. A., Bilgin, A., Flohr, T. J., Chinen, T. T., & Kasner, J. H. (2002). An overview of quantization in JPEG2000. ELSEVIER Signal Processing: Image Communication, 17(1), 73–84.

    Google Scholar 

  • McFeeters, S. K. (2013). Using the Normalized Difference Water Index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing of Environment, 5(7), 3544–3561.

    Article  Google Scholar 

  • Ouma, Y. O., & Tateishi, R. (2006). A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: An empirical analysis using Landsat TM and ETM\(+\) data. International Journal of Remote Sensing, 27, 3153–3181.

    Article  Google Scholar 

  • Penna, B., Tillo, T., Magli, E., & Olmo, G. (2006). Progressive 3D coding of hyperspectral images based on JPEG2000. IEEE Geoscience and Remote Sensing Letters, 3(1), 125–129.

    Article  Google Scholar 

  • Penna, B., Tillo, T., Magli, E., & Olmo, G. (2007). Transform coding techniques for lossy hyperspectral data compression. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1408–1421.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS. In Proceeding of Third Earth Resources Technology Satellite Symposium 1, Greenbelt, USA, NASA SP-351, pp. 309–317.

  • Smith, R. (2006). Introduction to remote sensing of environment. TNTmips, MicroImage.

  • Taubman, D., & Marcellin, M. (2002). JPEG2000: Image compression fundamentals, standards, and practice. Norwell, MA: Kluwer, ser. International Series in Engineering and Computer Science.

    Book  Google Scholar 

  • TER Software. (2014). Group on interactive coding of images; Open Source CCSDS-122-B-1 Implementation and Extension, Oct. 2014. http://www.gici.uab.cat/TER.

  • Tillack, A., Clasen, A., Kleinschmit, B., & Förster, M. (2014). Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sensing of Environment, 141, 52–63.

    Article  Google Scholar 

  • Valsesia, D., & Magli, E. (2014). A novel rate control algorithm for onboard predictive coding of multispectral and hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6341–6355.

    Article  Google Scholar 

  • Zabala, A., Vitulli, R., & Pons, X. (2012). Impact of CCSDS-IDC and JPEG2000 compression on image quality and classification. Journal of Electrical and Computer Engineering, 2012, 13.

    Article  Google Scholar 

  • Zhou, P., Cheng, G., Liu, Z., Bu, S., & Hu, X. (2015). Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping. Multidimensional Systems and Signal Processing. doi:10.1007/s11045-015-0370-3.

  • Zollanvari, A., & Dougherty, E. R. (2014). Moments and root-mean square error of the Bayesian MMSE estimator of classification error in the Gaussian model. Pattern Recognition, 47, 2178–2192.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Major State Basic Research Development Program of China (973 Program 2015CB351804), the Natural Science Foundation of China under Grant Nos. 61472101 and 61390513. The authors would like to thank Dr. Ibrahim Omara for his support in this work and also the anonymous reviewers for their valuable comments that greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hagag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagag, A., Fan, X. & Abd El-Samie, F.E. Lossy compression of satellite images with low impact on vegetation features. Multidim Syst Sign Process 28, 1717–1736 (2017). https://doi.org/10.1007/s11045-016-0443-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0443-y

Keywords

Navigation