Skip to main content
Log in

A hybrid learning-based framework for blind image quality assessment

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Blind image quality assessment aims to evaluate the quality of a given image without the availability of the original ground truth image and without the prior knowledge of the types of distortions present. Instead of using hand-crafted features to address specific type of image distortions, a hybrid learning-based blind image quality assessment approach is proposed in this paper to address more challenging mixed types of image distortions. The proposed approach integrates the convolution neural network (CNN) as a feature extractor, plus the support vector regression method to learn a mapping function from the CNN-trained features to the quality score of the input image. Extensive experiments are conducted using both standard image dataset and real-world surveillance video dataset to demonstrate the superior performance of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bottou, L. (2012). Stochastic gradient descent tricks. In G. Montavon, G. B. Orr, & K.-R. Muller (Eds.), Neural networks: Tricks of the trade, lecture notes in computer science (Vol. 7700, pp. 421–436). Berlin: Springer.

    Chapter  Google Scholar 

  • Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–17.

    Article  Google Scholar 

  • Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout networks. In Proceedings of the international conference on machine learning, Atlanta (pp. 1319–1327).

  • Gu, K., Wang, S., Zhai, G., Ma, S., Yang, X., Lin, W., et al. (2016). Blind quality assessment of tone-mapped images via analysis of information, naturalness, and structure. IEEE Transactions on Multimedia, 18(3), 432–443.

    Article  Google Scholar 

  • Gu, K., Zhai, G., Lin, W., Yang, X., & Zhang, W. (2015a). No-reference image sharpness assessment in autoregressive parameter space. IEEE Transactions on Image Processing, 24(10), 3218–3231.

    Article  MathSciNet  Google Scholar 

  • Gu, K., Zhai, G., Yang, X., & Zhang, W. (2014a). Deep learning network for blind image quality assessment. In IEEE international conference on image processing, Paris, France, Oct 2014 (pp. 511–515).

  • Gu, K., Zhai, G., Yang, X., & Zhang, W. (2014b). Hybrid no-reference quality metric for singly and multiply distorted images. IEEE Transactions on Broadcasting, 60(3), 555–567.

    Article  Google Scholar 

  • Gu, K., Zhai, G., Yang, X., Zhang, W., & Chen, C. W. (2015b). Automatic contrast enhancement technology with saliency preservation. IEEE Transactions on Circuits and Systems for Video Technology, 25(9), 1480–1494.

    Article  Google Scholar 

  • Gu, K., Zhai, G., Yang, X., & Zhang, W. (2015c). Using free energy principle for blind image quality assessment. IEEE Transactions on Multimedia, 17(1), 50–63.

    Article  Google Scholar 

  • Kang, L., Ye, P., Li, Y., & Doermann, D. (2014). Convolutional neural networks for no-reference image quality assessment. In Proceedings of the IEEE conference on computer vision and pattern recognition, Columbus, OH, June 2014 (pp. 1733–1740).

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Image net classification with deep convolutional neural networks. In Annual conference on neural information processing systems, Nevada, 2012 (pp. 1–5).

  • Larson, E. C., & Chandler, D. M. (2010). Most apparent distortion: Full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 19(1), 1–21.

    Google Scholar 

  • Li, C., Bovik, A. C., & Wu, X. (2011). Blind image quality assessment using a general regression neural network. IEEE Transactions on Neural Networks, 22(5), 793–799.

    Article  Google Scholar 

  • Li, Q., Lin, W., & Fang, Y. (2016a). No-reference quality assessment for multiply-distorted images in gradient domain. IEEE Signal Processing Letters, 23(4), 541–545.

    Article  Google Scholar 

  • Li, Q., Lin, W., Xu, J., & Fang, Y. (2016b). Blind image quality assessment using statistical structural and luminance features. IEEE Transactions on Multimedia, 18(12), 2457–2469.

    Article  Google Scholar 

  • Manap, R. A., & Shao, L. (2015). Non-distortion-specific no-reference image quality assessment: A survey. Information Sciences, 301, 141–160.

    Article  Google Scholar 

  • Mittal, A., Moorthy, A. K., & Bovik, A. C. (2012). No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 21(12), 4695–4708.

    Article  MathSciNet  MATH  Google Scholar 

  • Mittal, A., Soundararajan, R., & Bovik, A. C. (2013). Making a completely blind image quality analyzer. IEEE Signal Processing Letters, 20(3), 209–212.

    Article  Google Scholar 

  • Moorthy, A. K., & Bovik, A. C. (2011). Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 20(12), 3350–3364.

    Article  MathSciNet  MATH  Google Scholar 

  • Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J., et al. (2015). Image database TID2013: Peculiarities, results and perspectives. Signal Processing: Image Communication, 30, 57–77.

    Google Scholar 

  • Saad, M. A., Bovik, A. C., & Charrier, C. (2012). Blind image quality assessment: A natural scene statistics approach in the DCT domain. IEEE Transactions on Image Processing, 21(8), 3339–3352.

    Article  MathSciNet  MATH  Google Scholar 

  • Sheikh, H. R., Wang, Z., Cormack, L., & Bovik, A. C. (2005). Live image quality assessment database release 2. http://live.ece.utexas.edu/research/quality.

  • Vedaldi, A., & Lenc, K. (2015). MatConvNet: Convolutional neural networks for MATLAB. In Proceedings of the ACM international conference on multimedia, Brisbane, Australia, Oct 2015 (pp. 689–692).

  • Virtanen, T., Nuutinen, M., Vaahteranoksa, M., Oittinen, P., & Hkkinen, J. (2015). CID2013: A database for evaluating no-reference image quality assessment algorithms. IEEE Transactions on Image Processing, 24(1), 390–402.

    Article  MathSciNet  Google Scholar 

  • Wang, Z. (2011). Applications of objective image quality assessment methods. IEEE Signal Processing Magazine, 28(6), 137–142.

    Article  Google Scholar 

  • Ye, P., Kumar, J., Kang, L., & Doermann, D. (2012). Unsupervised feature learning framework for no-reference image quality assessment. In IEEE Conference on computer vision and pattern recognition, Providence, RI, June 2012 (pp. 1098–1105).

  • Zhang, L., Zhang, L., & Bovik, A. C. (2015). A feature-enriched completely blind image quality evaluator. IEEE Transactions on Image Processing, 24(8), 2579–2591.

    Article  MathSciNet  Google Scholar 

  • Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 55(8), 2378–2386.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, M., Tu, Q., Lu, Y., Chang, Y., Yang, B., & Men, A. (2015). No-reference image quality assessment based on phase congruency and spectral entropies. In Proceedings of the picture coding symposium: Cairns, QLD, May (pp. 302–306).

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61375017), and the innovation foundation of Wuhan University of Science and Technology graduate student (JCX2015010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Chen, L. & Tian, J. A hybrid learning-based framework for blind image quality assessment. Multidim Syst Sign Process 29, 839–849 (2018). https://doi.org/10.1007/s11045-017-0475-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0475-y

Keywords

Navigation