Skip to main content
Log in

Chebyshev approximation problem of multidimensional IIR digital filters in the frequency domain

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the problem of simultaneous approximation of a prescribed multidimensional frequency response. The frequency responses of multidimensional IIR digital filters are used as nonlinear approximating functions. Chebyshev approximation theory and the notion of line homotopy are used to reveal the approximation properties of this set of IIR functions. A sign condition is derived to characterize a convex stable domain in this set. This sign condition can be incorporated into the optimization of the Chebyshev simultaneous approximation. The generally sufficient global Kolmogorov criterion is shown to be a necessary condition, for the characterization of best approximation, in the considered set of approximating functions. Thus, it can be incorporated, as a stopping constraint, in the design of the optimal filter. Moreover, the local Kolmogorov criterion is shown to be also necessary for the set of approximating functions. Finally, it is proved that the best approximation is a global minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

\(\mathcal {H}\) :

Set of frequency responses of N-dimensional IIR digital filters

H :

Transfer function or frequency response of an N-dimensional IIR digital filter

V :

Numerator of the transfer function

D :

Denominator of the transfer function

g :

Real part of the denominator of the transfer function

u :

Imaginary part of the denominator of the transfer function

A :

Coefficient vector of the denominator of the transfer function

B :

Coefficient vector of the numerator of the transfer function

d :

Dimension of the parameter space

P :

Open set of the parameter space of A in \(\mathfrak {R}^d(A)\)

Q :

Open set of the parameter space of B in \(\mathfrak {R}^d(B)\)

\(\mathcal{C}^N\) :

Complex variable N-dimensional space

\({\mathfrak {R}}^N\) :

Real variable N-dimensional space

\( U^N\) :

N-dimensional open unit poly-disc

\(T^N\) :

Boundary of N-dimensional unit poly-disc

\({\varOmega }\) :

A compact set in the N-dimensional frequency domain

e :

Error function of the Chebyshev approximation

M :

H-set, a discrete subset of points, in \(\varOmega \), at which the error attains its maximum

\(M^*\) :

Minimal H-set

\(H^*\) :

Best approximation

References

  • Braess, D. (1986). Nonlinear approximation theory. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Brosowski, B. (1965). Ueber Extremalsignaturen Linearer Polynome in n Vraiblen. Numerische Mathematik, 7, 396–405.

    Article  MathSciNet  MATH  Google Scholar 

  • Brosowski, B. (1968). Nicht-lineare Tschebyscheff-approximation. Mannheim: Bibliographisces Institute.

    MATH  Google Scholar 

  • Brosowski, B. (1969a). Einige Bemerkungen Zur Verallgemeinerten Kolmogoroffschen Kriterium. In Funktional Analytische Methoden der Numerischen Mathematik. Basel: Springer.

  • Brosowski, B. (1969b). Nichtlineare Approximation in Normierten Vektorraeumen. In Abstract spaces and approximation. Basel: Springer.

  • Collatz, L. (1966). Functional analysis and numerical math. New York: Academic Press.

    MATH  Google Scholar 

  • Collatz, L., & Krabs, W. (1973). Approximationstheorie. Stuttgart: Teubner Studienbuecher.

    Book  MATH  Google Scholar 

  • Chen, T. C. (1988). Design of multidimensional recursive digital filters, Ph.D. Thesis. Arizona State University.

  • Chong, L., & Watson, G. A. (1995). Characterization of a best and a unique best approximation from constrained rationals. Computers & Mathematics with Applications, 30(3–6), 51–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Chottera, A. T., & Julien, G. A. (1982). Design of two-dimensional recursive digital filters using linear programming. IEEE Transactions on Circuits and Systems, 29(12), 817–826.

    Article  MathSciNet  Google Scholar 

  • Decarlo, R. A., Murray, J., & Saeks, R. (1976). Multivariable nyquist theory. International Journal of Control, 25(5), 657–675.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudgeon, D., & Mersereau, R. (1984). Multidimensional digital signal processing (chap. 4, pp. 189–193). Englewood Cliffs, NJ: Prentice Hall.

  • Dumitrescu, B. (2004). Multistage IIR filter design using convex stability domains defined by positive realness. IEEE Transactions on Signal Processing, 52(4), 962–974.

    Article  MathSciNet  MATH  Google Scholar 

  • Dumitrescu, B. (2005). Optimization of two-dimensional IIR filters with non-seperable and seperable denominator. IEEE Transactions on Signal Processing, 53(5), 1768–1777.

    Article  MathSciNet  MATH  Google Scholar 

  • Dumitrescu, B. (2007). Positive trigonometric polynomials. Berlin: Springer.

    MATH  Google Scholar 

  • Dunham, C. B. (1975). Chebyshev approximation by families with the betweeness property, II. Indiana University Mathematics Journal, 24(8), 727–732.

    Article  MathSciNet  MATH  Google Scholar 

  • Goodman, D. (1977). Some stability properties of two-dimensional linear shift-invariant digital filters. IEEE Transactions Circuits and Systems, 24, 201–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Grtelazzo, G., & Mian, G. (1991). On two-dimensional group delay equalization. IEEE Transactions on Circuits and Systems for Video Technology, 1(4), 362–369.

    Article  Google Scholar 

  • Kafri, W. S., & Hashlamoun, W. (1999). N-dimensional phase approximation in the \(L_{\infty }\)-norm. Multidimensional Systems and Signal Processing, 11, 257–275.

    Article  MathSciNet  MATH  Google Scholar 

  • Krabs, W. (1979). Optimization and approximation. New York: Wiley.

    MATH  Google Scholar 

  • Lawson, S., & Anderson, M. (1997). The design of 2-D approximately linear phase filters using a direct approximation. Signal Processing, 57, 205–221.

    Article  MATH  Google Scholar 

  • Lu, W. S. (2002). A unified approach for the design of 2-D digital filters via semi-definite programming. IEEE on Circuits and Systems I; Fundamental Theory and applications, 49(6), 814–826.

    MathSciNet  MATH  Google Scholar 

  • Mastorakis, N., Gonos, I., & Swamy, M. N. S. (2003). Two-dimensional recursive filters using genetic algorithms. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(5), 634–639.

    Article  Google Scholar 

  • Meinardus, G. (1967). Approximation of functions, Springer Tracks Nat. Philosophy (Vol. 13). New York: Springer.

  • Meinardus, G., & Schwedt, D. (1964). Nicht-lineare approximation. Archive for Rational Mechanics and Analysis, 17, 297–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Munkres, J. (2000). Topology (2nd ed., chap. 9, pp. 321–330). New York: Pearson Education International.

  • Mutluay, H. E., & Fahmy, M. M. (1985). Frequency-domain design of N-D digital filters. IEEE Transaction on Circuits and Systems, 32(12), 1226–1233.

    Article  Google Scholar 

  • Opfer, G. (1978). An algorithm for the construction of best approximations based on Kolmogorov criterion. Journal of Approximation Theory, 23, 299–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Pitas, J. K., & Venetsanopoulos, A. N. (1986). The use of symmetries in the design of multidimensional digital filters. IEEE Transactions on Circuits and Systems, 33(9), 863–872.

    Article  MATH  Google Scholar 

  • Reddy, H. C., Khoo, I. H., & Rajan, P. K. (2003). 2-D symmetry: Theory and filter design applications. IEEE Circuits and System Magazine, 3(3), 4–33.

  • Rice, J. (1969). The approximation of functions (Vol. 2). Reading, MA: Addison Wesley.

    MATH  Google Scholar 

  • Roytman, L. M., & Swamy, M. N. (1990). Stability analysis of 2-D digital filters having second kind singularities: Analog approach. Journal of Franklin Institute, 237(2), 295–305.

    Article  MATH  Google Scholar 

  • Siam, J., Kafri, N., & Kafri, W. (2014). Characterization of best Chebyshev approximation using the frequency response of IIR digital filters with convex stability. Digital Signal Processing, 25, 289–295.

    Article  Google Scholar 

  • Sheng-Lu, W., & Antoniou, A. (1992). Two-dimensional digital filters. New York: Marcel Dekker Inc.

    MATH  Google Scholar 

  • Swamy, M. N. S., Rotman, L. M., & Plotkin, E. I. (1985). On stability of three-and higher dimensional linear shift-invariant digital filter. IEEE Transactions on Circuits and Systems, 32(9), 888–892.

    Article  MATH  Google Scholar 

  • Taylor, G. D. (1972). On minimal H-sets. Journal of Approximation Theory, 5, 113–117.

  • Tehrani, F., & Ford, R. (1993). Phase equalization of one and two dimensional filters. IEEE Transaction on Signal Processing, 4(11), 3193–3196.

  • Torres-Muñoz, A., Rodríguez-Angeles, E., & Kharitonov, V. L. (2006). On Schur multivariate polynomials. IEEE Transactions on Circuits and Systems-I, Regular Papers, 53, 1166–1173.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Q., Li, H., & Shi, P. (2014). Decentralized adaptive fuzzy tracking control for robot finger dynamics. IEEE Transactions on Fuzzy Systems, 23(3), 501–510.

  • Zhou, Q., Shi, P., Tian, Y., & Wang, M. (2015). Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation. IEEE Transactions on Cybernetics, 45, 2119–2128.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasfi S. Kafri.

Appendix

Appendix

1.1 Examples

Example 1

(2D circular Low Pass Filters) Two low pass filters, \(H_{10}\) (Chen 1988, P. 94) of order 8 (4, 4), and \(H_{11}\) (Sheng-Lu and Antoniou 1992, P. 249) of order 10 (5, 5), are considered to show that under the validity of the sign condition the homotopic sequence \(h_{\lambda }\) is strictly monotone. The selected filters have circular symmetry. The denominators \(D_{10}\) and \(D_{11}\), with coefficients in the following matrices \(A_{10}\) and \(A_{11}\), were formed.

$$\begin{aligned} D_{10}= & {} {{\sum _{i=0}^{4}\sum _{j=0}^4} a_{10}(i,j){z_1}^{i} {z_2}^{j}} \\ D_{11}= & {} {{\sum _{i=0}^{5}\sum _{j=0}^5} a_{11}(i,j){z_1}^{i} {z_2}^{j}} \end{aligned}$$

The real parts \(g_{10}(\omega _1,\omega _2 )\), \(g_{11}(\omega _1,\omega _2 )\) and imaginary parts \(u_{10} (\omega _1,\omega _2 )\), \(u_{11} (\omega _1,\omega _2 )\) of \(D_{10}\) and \(D_{11}\) were extracted. The product \(g_{10} g_{11}+ u_{10} u_{11}\) was computed and plotted in the frequency range \(|\omega _1| <1\) and \(|\omega _2| <1\) to check the SC, i.e., \(g_{10} g_{11}+ u_{10} u_{11}>\)0. Figure 1 shows that the minimum value of the product \(g_{10} g_{11}+ u_{10}u_{11}\) is positive (minimum value = 0.0019) and thus the sign condition is satisfied. The filters \(H_{10}\) and \(H_{11}\), for which the sign condition was validated, were combined to generate the homotopic sequence:

$$\begin{aligned} |H_{10}-h_{\lambda }|=\left| \frac{\lambda {D_{11}}}{\lambda {D_{11}}+(1-\lambda )D_{11}}\right| |(H_{10}-H_{11})| \end{aligned}$$

and its derivative

$$\begin{aligned} \frac{\partial |H_{10}-h_{\lambda }|}{\partial \lambda }={\frac{|D_{10}|}{|D_{\lambda }|^3}}\left[ |D_{10}|^2+\lambda \left( g_{10}g_{11}+u_{10}u_{11}-|D_{10}|^2\right) \right] |H_{10}-H_{11}| \end{aligned}$$

The derivative was computed as a function of \(\lambda \) for different (\(\omega _1\), \(\omega _2\) ) pairs in the considered frequency range. Results showed that the sign of the derivatives is always positive and consequently, the homotopic sequence is strictly monotone. Figure 2 shows the plot of the derivative versus \(\lambda \) for \((\omega _1, \omega _2)=(-0.5566, 0.7279),(-0.3425, 0.5138),(-0.1285, 0.9957)\) and (0.0856, 0.5138). This plot shows, that under the validity of the sign condition, the derivative \(|H_{10}- h_{\lambda }|\) with respect to \(\lambda \), is positive for all the values of \(\lambda \).

$$\begin{aligned} A_{10}= & {} \left[ \begin{array}{ccccc} 1.0000 &{}\quad -4.1440 &{}\quad 6.1910 &{}\quad -4.9780 &{}\quad -0.0160\\ -4.1440&{}\quad 17.7000 &{}\quad -24.4800 &{}\quad 21.5000 &{}\quad -0.0177\\ 6.1910 &{}\quad -24.4800&{}\quad 35.5800&{}\quad -30.5800 &{}\quad -0.0047\\ -4.9780 &{}\quad 21.5000&{}\quad -30.5800 &{}\quad 27.7300 &{}\quad 0.0040\\ -0.0160 &{}\quad 0.0177 &{}\quad -0.0047 &{}\quad 0.0040 &{}\quad 0.0172 \end{array} \right] \\ A_{11}= & {} \left[ \begin{array}{cccccc} 0.0652 &{}\quad -0.6450&{}\quad 3.3632 &{}\quad -4.8317&{}\quad 0.3218 &{}\quad -0.1645\\ -0.7930 &{}\quad 7.8851 &{}\quad -25.8710 &{}\quad 23.8380 &{}\quad 3.4048 &{}\quad 3.4667\\ 4.2941 &{}\quad -28.7340 &{}\quad 61.5510 &{}\quad -29.3020&{}\quad -13.2490 &{}\quad 25.5190\\ -6.3054 &{}\quad 28.7070 &{}\quad 33.4870 &{}\quad -7.2275 &{}\quad 22.7050 &{}\quad 83.0110\\ 0.7907 &{}\quad 1.4820 &{}\quad -7.4214 &{}\quad -33.3130 &{}\quad 136.7600 &{}\quad -128.4300\\ -0.4134 &{}\quad 6.0739 &{}\quad -36.0290 &{}\quad 101.4700 &{}\quad 140.2000 &{}\quad 78.4280 \end{array}\right] . \end{aligned}$$
Fig. 2
figure 2

Example 1: the derivative of the homotopic sequence \(|H_{10}-h_{\lambda }|\) with respect to \(\lambda \) for different values of \(\omega _1\) and \(\omega _2\)

Fig. 3
figure 3

Example 2: plot of \(G = g_{20}g_{21} + u_{20}u_{21}\), versus (\(\omega _1, \omega _2\)) and different values of \(\omega _3\), for the combination of the two 3D circular filters \(H_{20}\) and \(H_{21}\)

Example 2

(3D circular Low Pass Filters) In this example, we considered two 3D circular LP filters, \(H_{20}\) of order 5 (1, 2, 2) and \(H_{21}\) of order 6 (2, 2, 2) (Chen 1988, pp. 154, 156), to show that under the validity of the sign condition the homotopic sequence \(h_{\lambda }\) is strictly monotone. As expected, the computation cost increased significantly with respect to the two-dimensional case (Example 1). The denominators \(D_{20}\) and \(D_{21}\), with coefficients in the following two 3D matrices \(A_{20}\) and \(A_{21}\), respectively, were formed.

$$\begin{aligned} D_{20}= & {} {{\sum _{i=0}^{1}\sum _{j=0}^2}\sum _{j=0}^2} a_{20}(i,j,k){z_1}^{i} {z_2}^{j}{z_3}^{k } \\ D_{21}= & {} {{\sum _{i=0}^{2}\sum _{j=0}^2}\sum _{j=0}^2} a_{21}(i,j,k){z_1}^{i} {z_2}^{j}{z_3}^{k} \end{aligned}$$

The real parts \(g_{20}(\omega _1,\omega _2,\omega _3 )\), \(g_{21}(\omega _1,\omega _2, \omega _3 )\) and imaginary parts \(u_{20}(\omega _1,\omega _2, \omega _3 )\), \(u_{21} (\omega _1,\omega _2, \omega _3 )\) of \(D_{20}\) and \(D_{21}\) were extracted. The product \(g_{20}g_{21}+ u_{20}u_{21}\) was computed and plotted in the frequency range \(|\omega _1| <0.4\), \(|\omega _2| <0.4\), and \(|\omega _3| <0.4\) to check the SC in the 3D case, i.e. \(g_{20}g_{21}+u_{20}u_{21}>\)0. Figure 3 shows that the minimum value of the product \(g_{20}g_{21}\)+\(u_{20}u_{21}\) is positive (minimum value \(=\) 0.1145) and thus the sign condition is satisfied. The filters \(H_{20}\) and \(H_{21}\), that satisfy the SC, were combined to generate the homotopic sequence:

$$\begin{aligned} |H_{20}-h_{\lambda }|=\left| \frac{\lambda {D_{21}}}{\lambda {D_{21}}+(1-\lambda )D_{21}}\right| .|(H_{20}-H_{21})| \end{aligned}$$

and its derivative

$$\begin{aligned} \frac{\partial |H_{20}-h_{\lambda }|}{\partial \lambda }={\frac{|D_{20}|}{|D_{\lambda }|^3}}\left[ |D_{20}|^2+\lambda \left( g_{20}g_{21}+u_{20}u_{21}-|D_{20}|^2\right) \right] |H_{20}-H_{21}| \end{aligned}$$
Fig. 4
figure 4

Example 2: the derivative of the homotopic sequence \(|H_{20}-h_{\lambda }|\) with respect to \(\lambda \) for different values of \(\omega _1\), \(\omega _2\), and \(\omega _3\)

The derivative was computed as a function of \(\lambda \) for different (\(\omega _1,\omega _2,\omega _3\)) in the filter frequency range. Results showed that the sign of the derivative is always positive and consequently, the homotopic sequence is strictly monotone. Figure 4 shows the plot of the derivative versus \(\lambda \) for (\(\omega _1,\omega _2,\omega _3) =(0.2042,-0.2356,-0.0666),(-0.0471,-0.0471, -0.2444),(-0.1728,-0.0471,-0.2444)\) and \((0.3299,0.0157,-0.1555)\). The plot shows, that under the validity of the sign condition, the derivative \(|H_{20}- h_{\lambda }|\) with respect to \(\lambda \), is positive for all the values of \(\lambda \).

$$\begin{aligned} A_{20}(:,:,1)= & {} \left[ \begin{array}{ccccc} 1.0000 &{}\quad -2.0672 &{}\quad 1.9123 &{}\quad -0.9076 &{}\quad 0.1817\\ -2.0672 &{}\quad 4.2732 &{}\quad -3.9529 &{}\quad 1.8761 &{}\quad -0.3756\\ 1.9123 &{}\quad -3.9529 &{}\quad 3.6567 &{}\quad -1.7355 &{}\quad 0.3475\\ -0.9076 &{}\quad 1.8761 &{}\quad -1.7355 &{}\quad 0.8237 &{}\quad -0.1649\\ 0.1817 &{}\quad -0.3756 &{}\quad 0.3475 &{}\quad -0.1649 &{}\quad 0.0330\\ \end{array} \right] \\ A_{20}(:,:,2)= & {} \left[ \begin{array}{ccccc} -2.0672 &{}\quad 4.2732 &{}\quad -3.9529 &{}\quad 1.8761 &{}\quad -0.3756\\ 4.2732 &{}\quad -8.8333 &{}\quad 8.1714 &{}\quad -3.8782 &{}\quad 0.7765\\ -3.9529 &{}\quad 8.1714 &{}\quad -7.5590 &{}\quad 3.5875 &{}\quad -0.7183\\ 1.8761 &{}\quad -3.8782 &{}\quad 3.5875 &{}\quad -1.7027 &{}\quad 0.3409\\ -0.3756 &{}\quad 0.7765 &{}\quad -0.7183 &{}\quad 0.3409 &{}\quad -0.0683\\ \end{array} \right] \\ A_{20}(:,:,3)= & {} \left[ \begin{array}{ccccc} 1.9123 &{}\quad -3.9529 &{}\quad 3.6567 &{}\quad -1.7355 &{}\quad 0.3475\\ -3.9529 &{}\quad 8.1714 &{}\quad -7.5590 &{}\quad 3.5875 &{}\quad -0.7183\\ 3.6567 &{}\quad -7.5590 &{}\quad 6.9926 &{}\quad -3.3187 &{}\quad 0.6645\\ -1.7355 &{}\quad 3.5875 &{}\quad -3.3187 &{}\quad 1.5751 &{}\quad -0.3154\\ 0.3475 &{}\quad -0.7183 &{}\quad 0.6645 &{}\quad -0.3154 &{}\quad 0.0631\\ \end{array} \right] \\ A_{20}(:,:,4)= & {} \left[ \begin{array}{ccccc} -0.9076 &{}\quad 1.8761 &{}\quad -1.7355 &{}\quad -1.7355 &{}\quad 0.3475\\ 1.8761 &{}\quad -3.8782 &{}\quad 3.5875 &{}\quad -1.7027 &{}\quad 0.3409\\ -1.7355 &{}\quad 3.5875 &{}\quad -3.3187 &{}\quad 1.5751 &{}\quad -0.3154\\ -1.7355 &{}\quad -1.7027 &{}\quad 1.5751 &{}\quad -0.7475 &{}\quad 0.1497\\ 0.3475 &{}\quad 0.3409 &{}\quad -0.3154 &{}\quad 0.1497 &{}\quad -0.0300\\ \end{array} \right] \\ A_{20}(:,:,5)= & {} \left[ \begin{array}{ccccc} 0.1817 &{}\quad -0.3756 &{}\quad 0.3475 &{}\quad -0.1343 &{}\quad 0.0330\\ -0.3756 &{}\quad 0.7765 &{}\quad -0.7183 &{}\quad 0.3409 &{}\quad -0.0683\\ 0.3475 &{}\quad -0.7183 &{}\quad 0.6645 &{}\quad -0.3154 &{}\quad 0.0631\\ -0.1649 &{}\quad 0.3409 &{}\quad -0.3154 &{}\quad 0.1497 &{}\quad -0.0300\\ 0.0330 &{}\quad -0.0683 &{}\quad 0.0631 &{}\quad -0.0300 &{}\quad 0.0060\\ \end{array} \right] \\ A_{21}(:,:,1)= & {} \left[ \begin{array}{ccccc} 1.0000 &{}\quad -1.6218 &{}\quad 1.4840 &{}\quad -0.7392 &{}\quad 0.1514\\ -1.6218 &{}\quad 2.6303 &{}\quad -2.4068 &{}\quad 1.1988 &{}\quad -0.2455\\ 1.4840 &{}\quad -2.4068 &{}\quad 2.2024 &{}\quad -1.0970 &{}\quad 0.2246\\ -0.7392 &{}\quad 1.1988 &{}\quad -1.0970 &{}\quad 0.5464 &{}\quad -0.1119\\ 0.1514 &{}\quad -0.2455 &{}\quad 0.2246 &{}\quad -0.1119 &{}\quad 0.0229\\ \end{array} \right] \end{aligned}$$
$$\begin{aligned} A_{21}(:,:,2)= & {} \left[ \begin{array}{ccccc} -1.6218 &{}\quad 2.6303 &{}\quad -2.4068 &{}\quad 1.1988 &{}\quad -0.2455\\ 2.6303 &{}\quad -4.2659 &{}\quad 3.9035 &{}\quad -1.9443 &{}\quad 0.3981\\ -2.4068 &{}\quad 3.9035 &{}\quad -3.5718 &{}\quad 1.7791 &{}\quad -0.3643\\ 1.1988 &{}\quad -1.9443 &{}\quad 1.7791 &{}\quad -0.8861 &{}\quad 0.1815\\ -0.2455 &{}\quad 0.3981 &{}\quad -0.3643 &{}\quad 0.1815 &{}\quad -0.0372\\ \end{array} \right] \\ A_{21}(:,:,3)= & {} \left[ \begin{array}{ccccc} 1.4840 &{}\quad -2.4068 &{}\quad 2.2024 &{}\quad -1.0970 &{}\quad 0.2246\\ -2.4068 &{}\quad 3.9035 &{}\quad -3.5718 &{}\quad 1.7791 &{}\quad -0.3643\\ 2.2024 &{}\quad -3.5718 &{}\quad 3.2684 &{}\quad -1.6279 &{}\quad 0.3334\\ -1.0970 &{}\quad 1.7791 &{}\quad -1.6279 &{}\quad 0.8108 &{}\quad -0.1660\\ 0.2246 &{}\quad -0.3643 &{}\quad 0.3334 &{}\quad -0.1660 &{}\quad 0.0340\\ \end{array} \right] \\ A_{21}(:,:,4)= & {} \left[ \begin{array}{ccccc} -0.7392 &{}\quad 1.1988 &{}\quad -1.0970 &{}\quad -1.0970 &{}\quad 0.2246\\ 1.1988 &{}\quad -1.9443 &{}\quad 1.7791 &{}\quad -0.8861 &{}\quad 0.1815\\ -1.0970 &{}\quad 1.7791 &{}\quad -1.6279 &{}\quad 0.8108 &{}\quad -0.1660\\ -1.0970 &{}\quad -0.8861 &{}\quad 0.8108 &{}\quad -0.4039 &{}\quad 0.0827\\ 0.2246 &{}\quad 0.1815 &{}\quad -0.1660 &{}\quad 0.0827 &{}\quad -0.0169\\ \end{array} \right] \\ A_{21}(:,:,5)= & {} \left[ \begin{array}{ccccc} 0.1514 &{}\quad -0.2455 &{}\quad 0.2246 &{}\quad 0.1514 &{}\quad 0.0229\\ -0.2455 &{}\quad 0.3981 &{}\quad -0.3643 &{}\quad 0.1815 &{}\quad -0.0372\\ 0.2246 &{}\quad -0.3643 &{}\quad 0.3334 &{}\quad - 0.1660 &{}\quad 0.0340\\ 0.1514 &{}\quad 0.1815 &{}\quad -0.1660 &{}\quad 0.0827 &{}\quad -0.0169\\ 0.0229 &{}\quad -0.0372 &{}\quad 0.0340 &{}\quad -0.0169 &{}\quad 0.0035\\ \end{array}\right] . \end{aligned}$$

1.2 Proofs

Proof of Theorem 4

Sufficiency is a direct result from Dunham (1975), Meinardus and Schwedt (1964) and Meinardus (1967).

Necessity depends upon the existence of the homotopy, \(h_{\lambda }\), and on general concepts of approximation theory (Brosowski 1968; Dunham 1975; Siam et al. 2014).

Necessity Let \(H^*\) be not a best approximation and suppose there exists \(H_1\) such that \(||H_d-H_1||<||H_d-H^*||~ \forall ~\omega \in {M^*}\). Since the set \(M^*\subset {\varOmega }\) is a compact set, there exists \(\eta {>}0\) such that \(S(\omega )=Re[\overline{(H_d-H^*)}(H_1-H^*)]\ge \eta \) for \(\omega \in {M^*}\). By the continuity of \((H_d-H^*)~and~(H_1-H^*)\) there exists an open set W that covers \(M^*\), \(W=\{\omega \in {\varOmega }|S(\omega )~>{\eta \over {2}}\}\), i.e., \(\overline{W}\) includes \(M^*\). By Theorem 3 there exists an element \(h_{\lambda }\) between \(H_1\) and \(H^*\) such that \(||H_d-h_{\lambda }||<||H_d-H^*||\) and therefore

$$\begin{aligned} 2Re[\overline{(H_d-H^*)}(h_{\lambda }-H^*)]>|h_{\lambda }-H^*|^2,\omega \in W \end{aligned}$$
(31)

and by Theorem 3

$$\begin{aligned} ||h_{\lambda }-H^*||\rightarrow ~0 \end{aligned}$$
(32)

and also the following estimation on W

$$\begin{aligned} |H_d-h_{\lambda }|^2= & {} |H_d-H^*|^2-2Re[\overline{(H_d-H^*)}(h_{\lambda }-H^*)]\nonumber \\&+\,|h_{\lambda }-H^*|^2, \omega \in W\nonumber \\= & {} |H_d-H^*|^2-2Re\bigg \{\overline{(H_d-H^*)}(H_1-H^*)\nonumber \\&\times \,\frac{\lambda {D_1}}{\lambda {D_1}+(1-\lambda )D_0}\bigg \}+|\frac{\lambda {D_1}}{\lambda {D_1}+(1-\lambda )D_0)}|^{2}|H1-H^*|^2\nonumber \\\le & {} |H_d-H^*|^2 \nonumber \\&-\,2Re\left\{ (H_d-H^*)(H_1-H^*)\frac{\lambda {D_1}}{\lambda {D_1}(1-\lambda )D_0}\right\} \nonumber \\&\left. +\,|\frac{\lambda {D_1}}{\lambda {D_1}+(1-\lambda )D_0}|^2\times ||H_1-H^*||^2\right] \nonumber \\&<\,||H_d-H^*||^2 \end{aligned}$$
(33)

A second estimation is performed on V, \(V=\varOmega {\setminus }{W}\). Consider the expression, \(\max _{V}|H_d-H^*|\). As V is a compact set and \(M^*\cap {V}=\phi \), then \(\max _{V}|H_d-H^*|\) and \(||H_d-H^*||\) cannot be on \(M^*\cap {V}\). Let

$$\begin{aligned} \max _{M^*}|H_d-H^*| -\{\max _{V}|H_d-H^*|\}=\mu >{0} \end{aligned}$$

By Theorem 3, \(||h_{\lambda }-H^*||\) converges uniformly to 0. Choosing \(\lambda \) such that

$$\begin{aligned} ||H^*-h_{\lambda }||<{\mu >0} \end{aligned}$$

and

$$\begin{aligned} |H_d-h_\lambda |= & {} |H_d-H^*-(h_{\lambda }-H^*)| \nonumber \\\le & {} |H_d-H^*| +|H^*-h_{\lambda }|\nonumber \\\le & {} |H_d-H^*|-\mu +\mu < \nonumber \\&|H_d-H^*| \end{aligned}$$
(34)

The two estimations (3334) on \(W\cup {V}\) contradict the optimality of \(H^*\). \(\square \)

Proof of Theorem 5

Let \(H^*\) be not a global minimum. Then there exists \(H_1\) such that \(||H_d-H_1||<||H_d-H^*||\), implying \(Re[\overline{(H_d-H^*)}(H_1-H^*)]>{0} \forall \omega \in {M^*}\). By theorem (3) there exists a sequence, \(\{h_{\lambda }\}\subset \mathcal {H}\) which converges uniformly to \(H^*\) such that \(||H_d-h_{\lambda }||< ||H_d-H^*||\), implying \(Re\{\overline{(H_d-H^*)}(h_{\lambda }-H^*)>{0}\) for \(\omega \in ~M^*\). Hence by Lemma 1 and the expression of Theorem (4). \(H^*\) is not a local minimum. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siam, J.O., Kafri, W.S. Chebyshev approximation problem of multidimensional IIR digital filters in the frequency domain. Multidim Syst Sign Process 29, 1739–1756 (2018). https://doi.org/10.1007/s11045-017-0525-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0525-5

Keywords

Navigation