Skip to main content
Log in

Joint range and angle estimation for an integrated system combining MIMO radar with OFDM communication

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

To perform the integration of radar and communication in waveform, we design an integrated system combining multiple-input multiple-output radar with orthogonal frequency division multiplexing (OFDM) communication. In this system, each antenna transmits the integrated waveform with a nonoverlapping block sub-frequency band. The utilized waveform is a variation of the classical OFDM communication waveform. In order to sufficiently exploit the entire system bandwidth and array aperture, a joint time and space processing approach is proposed, and hence the range and angle estimations with high resolution are obtained, whereas the range and angle are coupled. Moreover, the loss in processing gain and the Cramér–Rao bounds of range and angle estimates based on integrated waveform are derived, respectively. Theoretical analysis validates that the designed system is capable of implementing the radar and communication functions simultaneously. Finally, numerical results are presented to verify the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Blunt, S. D., Cook, M. R. & Stiles J (2010). Embedding information into radar emissions via waveform implementation. In 2010 International waveform diversity and design conference, niagara falls, on, August 8–13, 2010 (pp. 195–199).

  • Bölcskei, H., Borgmann, M., & Paulraj, A. J. (2003). Impact of propagation environment on the performance of space-frequency coded MIMO–OFDM. IEEE Journal on Selected Areas in Communications, 21(3), 427–439.

    Article  Google Scholar 

  • Bölcskei, H., Gesbert, D., & Paulraj, A. J. (2002). On the capacity of OFDM-based spatial multiplexing systems. IEEE Transactions on Communications, 50(2), 225–234.

    Article  Google Scholar 

  • Cao, Y., & Xia, X. (2015). IRCI free MIMO–OFDM SAR using circularly shifted Zadoff-Chu sequences. IEEE Geoscience and Remote Sensing Letters, 12(5), 1126–1130.

    Article  Google Scholar 

  • Cao, Y., Xia, G., & Wang, S. (2015). IRCI free colocated MIMO radar based on sufficient cyclic prefix ofdm waveforms. IEEE Transactions on Aerospace and Electronic Systems, 51(3), 2107–2120.

    Article  Google Scholar 

  • Dogandžić, A., & Nehorai, A. (2001). Cramér–Rao bounds for estimating range, velocity, and direction with an active array. IEEE Transactions on Signal Processing, 49(6), 1122–1137.

    Article  Google Scholar 

  • Fishler, E., Haimovich, A., Blum, R., Cimini L., Chizhik, D., & Valenzuela R (2004). MIMO radar: An idea whose time has come. In Proceedings of the IEEE radar conference, April 26–29, 2004 (pp. 71–78).

  • Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.

    Article  Google Scholar 

  • Foschini, G. J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell labs technical journal, 1(1), 41–59.

    Google Scholar 

  • Garmatyuk, D., Kauffman, K., Schuerger, J., & Spalding, S. (2009). Wideband OFDM system for radar and communications. In 2009 IEEE radar conference, Pasadena, CA, May 4–8, 2009 (pp. 1–6).

  • Han, L., & Wu, K. (2011). Multifunctional transceiver for future intelligent transportation systems. IEEE Transactions on Microwave Theory and Techniques, 59(7), 1879–1892.

    Article  Google Scholar 

  • Han, L., & Wu, K. (2012). 24-GHz integrated radio and radar system capable of time-agile wireless communication and sensing. IEEE Transactions on Microwave Theory and Techniques, 60(3), 619–631.

    Article  Google Scholar 

  • Hassanien, A., Amin, M. G., Zhang, Y. D., & Ahmad, F. (2016a). Dual-function radar-communications: information embedding using sidelobe control and waveform diversity. IEEE Transactions on Signal Processing, 64(8), 2168–2181.

    Article  MathSciNet  MATH  Google Scholar 

  • Hassanien, A., Amin, M. G., Zhang, Y. D., & Ahmad, F. (2016b). Signaling strategies for dual-function radar communications: an overview. IEEE Aerospace and Electronic Systems Magazine, 31(10), 36–45.

    Article  Google Scholar 

  • Hu, L., Du, Z. C., & Xue, G. R. (2014). Radar-communication integration based on OFDM signal. In 2014 IEEE international conference on signal processing, communications and computing (ICSPCC), Guilin, August 5–8, 2014 (pp 442–445).

  • Jankiraman, M., Wessels, B. J., & Van Genderen, P. (1998). Design of a multifrequency FMCW radar. In 28th European microwave conference, Amsterdam, Netherlands, October 1998 (pp. 584–589).

  • Jankiraman, M., Wessels, B. J., van Genderen, P. “Pandora multifrequency FMCW/SFCW radar”, in 2000 IEEE International Radar Conference, Alexandria, VA, May 7–12, 2000 (pp. 750–757).

  • Johnson, D. H., & Dudgeon, D. E. (1993). Array signal processing-concepts and techniques. Englewood Cliffs, NJ: Prentice Hall.

    MATH  Google Scholar 

  • Kelly, E. J. (1961). The radar measurement of range, velocity and acceleration. IRE Transactions on Military Electronics, 1051, 51–57.

    Article  Google Scholar 

  • Levanon, N. (2000a). Multifrequency complementary phase-coded radar signal. IEE Proceedings Radar, Sonar and Navigation, 147(6), 276–284.

    Article  Google Scholar 

  • Levanon, N. (2000) Multifrequency radar signals. In 2000 IEEE international radar conference, Alexandria, VA, May 7–12, 2000 (pp. 683–688).

  • Levanon, N., & Mozeson, E. (2004). Radar signals. Hoboken, New Jersey: Wiley.

    Book  Google Scholar 

  • Liu, Y., Liao, G., Xu, J., Yang, Z., Huang, L., & Zhang, Y. (2017a). Transmit power adaptation for orthogonal frequency division multiplexing integrated radar and communication systems. Journal of Applied Remote Sensing, 11(3), 1–17.

    Article  Google Scholar 

  • Liu, Y., Liao, G., Xu, J., Yang, Z., & Zhang, Y. (2017b). Adaptive OFDM integrated radar and communications waveform design based on information theory. IEEE Communications Letters, 21(10), 2174–2177.

    Article  Google Scholar 

  • Liu, Y., Liao, G., Yang, Z., & Xu, J. (2017c). Multiobjective optimal waveform design for OFDM integrated radar and communication systems. Signal Processing, 141, 331–342.

    Article  Google Scholar 

  • Liu, Y., Liao, G., Yang, Z., & Xu, J. (2017d). Design of integrated radar and communication system based on MIMO–OFDM waveform. Journal of Systems Engineering and Electronics, 28(4), 669–680.

    Google Scholar 

  • Liu, W., Wang, Y., Liu, J., Xie, W., Chen, H., & Gu, W. (2015). Adaptive detection without training data in colocated MIMO radar. IEEE Transactions on Aerospace and Electronic Systems, 51(3), 2469–2479.

    Article  Google Scholar 

  • Liu, Y., Liao, G., & Yang, Z. (2016). Range and angle estimation for MIMO–OFDM integrated radar and communication systems. In 2016 CIE international conference on radar, Guangzhou, China, October 10–13, 2016.

  • Liu, J., Zhou, S., Liu, W., Zheng, J., Liu, H., & Li, H. (2018). Tunable adaptive detection in colocated MIMO radar. IEEE Transactions on Signal Processing, 66(4), 1080–1092.

    Article  MathSciNet  MATH  Google Scholar 

  • Mealey, R. M. (1963). A method for calculating error probabilities in a radar communication system. IEEE Transaction on Space Electronics and Telemetry, 9(2), 37–42.

    Article  Google Scholar 

  • Mishra, A. K., & Inggs, M. (2014). “FOPEN capabilities of commensal radars based on whitespace communication systems”, in IEEE CONECCT. Bangalore, Jan., 6–7, 1–5.

    Google Scholar 

  • Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHZ Band, IEEE Standard 802.11a, 1999.

  • Rabaste, O., & Savy, L. (2015). Mismatched filter optimization for radar applications using quadratically constrained quadratic programs. IEEE Transactions on Aerospace and Electronic Systems, 51(4), 3107–3122.

    Article  Google Scholar 

  • Raleigh, G. G., & Cioffi, J. M. (1998). Spatio-temporal coding for wireless communication. IEEE Transactions on Communications, 46(3), 357–366.

    Article  Google Scholar 

  • Roger, S. C., & Sergio, V. (1993). Gaussian multiaccess channels with ISI: capacity region and multiuser water-filling. IEEE Transactions on Information Theory, 39(3), 773–785.

    Article  MathSciNet  MATH  Google Scholar 

  • Sen, S., & Nehorai, A. (2009a). OFDM MIMO radar design for low-angle tracking using mutual information. In 2009 3rd IEEE international workshop on computational advances in multi-sensor adaptive processing (CAMSAP), Aruba, Dutch Antilles, December 13–16, 2009 (pp. 173–176).

  • Sen, S., & Nehorai, A. (2009b). OFDM MIMO radar for low-grazing angle tracking. In 2009 conference record of the forty-third asilomar conference on signals, systems and computers, Pacific Grove, CA, November 1–4, 2009 (pp. 125–129).

  • Scharf, L. L. (1991). Statistical signal processing-detection, estimation, and time series analysis. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Sen, S. (2013). OFDM radar space-time adaptive processing by exploiting spatio-temporal sparsity. IEEE Transactions on Signal Processing, 61(1), 118–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Sen, S., & Nehorai, A. (2011a). Sparsity-based multi-target tracking using OFDM radar. IEEE Transactions on Signal Processing, 59(4), 1902–1906.

    Article  Google Scholar 

  • Sen, S., & Nehorai, A. (2010a). Adaptive design of OFDM radar signal with improved wideband ambiguity function. IEEE Transactions on Signal Processing, 58(2), 928–933.

    Article  MathSciNet  MATH  Google Scholar 

  • Sen, S., & Nehorai, A. (2011b). Adaptive OFDM radar for target detection in multipath scenarios. IEEE Transactions on Signal Processing, 59(1), 78–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Sen, S., & Nehorai, A. (2009b). Target detection in clutter using adaptive OFDM radar. IEEE Signal Processing Letter, 16(7), 592–595.

    Article  Google Scholar 

  • Sen, S., & Nehorai, A. (2010b). OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking. IEEE Transactions on Signal Processing, 58(6), 3152–3162.

    Article  MathSciNet  MATH  Google Scholar 

  • Sit, Y. L., Nguyen, T. T., & Zwick, T. (2013). 3D radar imaging with a MIMO OFDM-based radar. In 2013 Asia-Pacific microwave conference proceedings (APMC), Seoul, November 5–8, 2013 (pp. 68–70).

  • Sit, Y. L., Sobhani, B., Wiesbeck, W., & Zwick, T. (2015). Simple OFDM-based MIMO radar for real-time short-range area surveillance. In 2015 European radar conference (EuRAD), Paris, France, September 9–11, 2015 (pp. 121–124).

  • Sit, Y. L., Sturm, C., Baier, J., & Zwick, T. (2012). Direction of arrival estimation using the MUSIC algorithm for a MIMO OFDM radar. In 2012 IEEE radar conference, Atlanta, GA, May 7–11, 2012 (pp. 226–229).

  • Sit, Y. L., Reichardt, L., Sturm, C., & Zwick, T. (2011). Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario. In Radar conference, Kansas City, May 23–27, 2011 (pp. 718–723).

  • Sit, Y. L., & Zwick, T. (2014). MIMO OFDM radar with communication and interference cancellation features. In 2014 IEEE radar conference, Cincinnati, OH, May 19–23, 2014 (pp. 265–268).

  • Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood, and Cramer–Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(5), 720–741.

    Article  MathSciNet  MATH  Google Scholar 

  • Sturm, C., Sit, Y. L., Braun, M., & Zwick, T. (2013). Spectrally interleaved multi-carrier signals for radar network applications and multi-input multi-output radar. IET Radar Sonar Navigation, 7(3), 261–269.

    Article  Google Scholar 

  • Sturm, C., & Wiesbeck, W. (2011). Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proceedings of the IEEE, 99(7), 1236–1259.

    Article  Google Scholar 

  • Swindlehurst, A. L., & Stoica, P. (1998). Maximum likelihood methods in radar array signal processing. Proceedings of the IEEE, 86(2), 421–441.

    Article  Google Scholar 

  • Takase, H., & Shinriki, M. (2014). A dual-use radar and communication system with complete complementary codes. In 2014 15th international radar symposium (IRS), Gdansk, June 16–18, 2014 (pp. 16–18).

  • Takahara, H., Ohno, K., & Itami, M. (2012). A study on UWB radar assisted by inter-vehicle communication for safety applications. In 2012 IEEE international conference on vehicular electronics and safety, Istanbul, Turkey, July 24–27, 2012 (pp. 99–104).

  • Tigrek, R. F., De Heij, W. J. A., & Van Genderen, P. (2009). Multi-carrier radar waveform schemes for range and Doppler processing. In 2009 radar conference, Pasadena, CA, May 4–8, 2009 (pp. 1–5).

  • Theagenis, J. A., & Gregory, O. G. (1988). Range, radial velocity, and acceleration MLE using radar LFM pulse train. IEEE Transactions on Aerospace and Electronic Systems, 34(4), 1070–1084.

    Google Scholar 

  • Van Trees, H. L. (1971a). Detection, Estimation and Modulation Theory, Part III. New York: Wiley.

    MATH  Google Scholar 

  • Van Trees, H. L. (1971b). Detection, estimation and modulation theory Part IV. New York: Wiley.

    MATH  Google Scholar 

  • Van Zelst, A., & Schenk, T. C. W. (2004). Implementation of a MIMO OFDM-based wireless LAN system. IEEE Transactions on Signal Processing, 52(2), 483–494.

    Article  MathSciNet  MATH  Google Scholar 

  • Ward, J. (1995). Cramér–Rao bounds for target angle and Doppler estimation with space-time adaptive processing radar. In The Twenty-Ninth Asilomar conference on signals, systems and computers, Pacific Grove, CA, Octber 30–November 1, 1995 (vol. 2, pp. 1198–1202).

  • Wu, X. H., Kishk, A. A., & Glisson, A. W. (2010). MIMO–OFDM radar for direction estimation. IET Radar, Sonar and Navigation, 4(1), 28–36.

    Article  Google Scholar 

  • Xia, X., Zhang, T., & Kong, L. (2015). MIMO OFDM radar IRCI free range reconstruction with sufficient cyclic prefix. IEEE Transactions on Aerospace and Electronic Systems, 51(3), 2276–2293.

    Article  Google Scholar 

  • Young, G. O., Tavik, G., Hilterbrick, C., Evins, J., Alter, J., Crnkovich, J., Jr., et al. (2005). The advanced multifunction RF concept. IEEE Transactions on Microwave Theory and Techniques, 53(3), 1009–1020.

    Article  Google Scholar 

  • Zhang, T. X., & Xia, X. G. (2015). OFDM synthetic aperture radar imaging with sufficient cyclic prefix. IEEE Transactions on Geoscience and Remote Sensing, 53(1), 394–404.

    Article  MathSciNet  Google Scholar 

  • Zhao, J. J., Huo, K., & Li, X. (2014). A chaos-based phase-coded OFDM signal for joint radar-communication systems. In 2014 12th international conference on signal processing (ICSP), Hangzhou, October 19–23, 2014 (pp. 1997–2002).

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (NSFC) (Grants Nos. 61231017 and 61671352), and by China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Liu.

Appendices

Appendix A

1.1 Calculation of \( \tilde{r}_{i,p} ( \tau) \)

The \( \tilde{r}_{i,p} ( \tau)\) can be equivalently defined as \( \tilde{r}_{i,p} ( \tau ) = \int_{{\left( {p - 1} \right)T_{\text{r}} + T_{\text{p}} }}^{{\left({p + 1} \right)T_{\text{r}} - T_{\text{p}} }} {\tilde{s}_{i,p} (t)\tilde{s}_{i,p}^{*} \left( {t - \tau }\right){\text{d}}t} \). Consider \( p = 0\), hence

$$ \tilde{r}_{i,p} ( \tau) = \int_{{T_{\text{p}} - T_{\text{r}} }}^{{T_{\text{r}} - T_{\text{p}}}} {\left\{ \begin{aligned} &\sum\limits_{n = 0}^{{N_{\text{s}} -1}} {\left\{ \begin{aligned} {\text{rect}}\left[ {{{\left( {t -nT_{\text{s}} - pT_{\text{r}} } \right)} \mathord{\left/ {\vphantom {{\left( {t - nT_{\text{s}} - pT_{\text{r}} } \right)} {T_{\text{s}}}}} \right. \kern-0pt} {T_{\text{s}} }}} \right]\exp \left\{ { - j2\pi \left( {i - 1} \right)B_{\text{a}} nT_{\text{s}} } \right\} \hfill \\ \sum\limits_{m = 0}^{{N_{\text{c}} - 1}} {a_{i} \left({m,n,p} \right)\exp \left\{ {j2\pi m\Delta f\left( {t -nT_{\text{s}} } \right)} \right\}} \hfill \\ \end{aligned} \right.} \hfill \\ &\cdot \sum\limits_{{n^{\prime} = 0}}^{{N_{\text{s}} - 1}} {\left\{ \begin{aligned} {\text{rect}}\left[ {{{\left( {t -n^{\prime}T_{\text{s}} - pT_{\text{r}} - \tau } \right)} \mathord{\left/ {\vphantom {{\left( {t - n^{\prime}T_{\text{s}} - pT_{\text{r}} - \tau } \right)} {T_{\text{s}} }}} \right. \kern-0pt} {T_{\text{s}} }}} \right]\exp \left\{ {j2\pi \left( {i - 1} \right)B_{\text{a}} n^{\prime}T_{\text{s}} } \right\} \hfill \\ \sum\limits_{{m^{\prime} = 0}}^{{N_{c} - 1}} {a_{i}^{*} \left({m^{\prime},n^{\prime},p} \right)\exp \left\{ { - j2\pi m^{\prime}\Delta f\left( {t - \tau - n^{\prime}T_{\text{s}} } \right)} \right\}} \hfill \\ \end{aligned} \right.} \hfill \\ \end{aligned} \right.} {\text{d}}t $$
(A.1)

Case 1

For \( T_{\text{p}} \le \left| \tau \right| \le T_{\text{r}} - T_{\text{p}} \), it is obvious that

$$ \tilde{r}_{i,p} ( \tau) = 0 $$
(A.2a)

Case 2

For \( - T_{\text{p}} < \tau \le 0 \) and \( \left\lfloor {{\tau \mathord{\left/ {\vphantom {\tau {T_{\text{s}} }}} \right. \kern-0pt} {T_{\text{s}} }}} \right\rfloor = n_{0} \) with \( \left\lfloor x \right\rfloor \) denoting the integer part of \( x \), simplifying (A.1) yields

$$ \begin{aligned} \tilde{r}_{i,p} ( \tau) & = - \left( {\left| {n_{0} } \right|T_{\text{s}} + \tau } \right)\sum\limits_{n = 1}^{{N_{\text{s}} - 1 - \left| {n_{0} } \right|}} {\sum\limits_{m = 0}^{{N_{\text{c}} - 1}} {\sum\limits_{{m^{\prime} = 0}}^{{N_{\text{c}} - 1}} {\left\{ \begin{aligned} & a_{i} \left( {m,n - 1,p} \right)a_{i}^{*} \left( {m^{\prime } ,n + \left| {n_{0} } \right|,p} \right) \\ & \cdot \exp \left\{ {j\pi \Delta f\left[ {\left( {m + m^{\prime } } \right)\left| {n_{0} } \right| + 2m} \right]T_{\text{s}} } \right\} \\ & \cdot \exp \left\{ {j2\pi \left( {i - 1} \right)\left( {\left| {n_{0} } \right| + 1} \right)B_{\text{a}} T_{\text{s}} } \right\} \\ & \cdot \exp \left\{ {j\pi \left( {m + m^{\prime } } \right)\Delta f\tau } \right\} \\ & \cdot {\text{sinc}}\left\{ {\pi \left( {m - m^{\prime } } \right)\Delta f\left( { - \left| {n_{0} } \right|T_{\text{s}} - \tau } \right)} \right\} \\ \end{aligned} \right.} } } \\ & \quad + \left[ {\left( {\left| {n_{0} } \right| + 1} \right)T_{\text{s}} + \tau } \right]\sum\limits_{n = 0}^{{N_{\text{s}} - 1 - \left| {n_{0} } \right|}} {\sum\limits_{m = 0}^{{N_{\text{c}} - 1}} {\sum\limits_{{m^{\prime} = 0}}^{{N_{\text{c}} - 1}} {\left\{ \begin{aligned} & a_{i} \left( {m,n,p} \right)a_{i}^{*} \left( {m^{\prime } ,n + \left| {n_{0} } \right|,p} \right) \\ & \cdot \exp \left\{ {j2\pi \left( {i - 1} \right)\left| {n_{0} } \right|B_{\text{a}} T_{\text{s}} } \right\} \\ & \cdot \exp \left\{ {j\pi \left( {m + m^{\prime } } \right)\Delta f\tau } \right\} \\ & \cdot \exp \left\{ {j\pi \Delta f\left[ {\left( {m + m^{\prime } } \right)\left| {n_{0} } \right| + \left( {m - m^{\prime } } \right)} \right]T_{\text{s}} } \right\} \\ & \cdot {\text{sinc}}\left\{ {\pi \left( {m - m^{\prime } } \right)\Delta f\left[ {\left( {\left| {n_{0} } \right| + 1} \right)T_{\text{s}} + \tau } \right]} \right\} \\ \end{aligned} \right.} } } \\ \end{aligned} $$
(A.2b)

where \( {\text{sinc}}\left( x \right) = \sin x/x \cdot\)

Case 3

For \( 0 < \tau < T_{\text{p}} \) and \( \left\lfloor {{\tau \mathord{\left/ {\vphantom {\tau {T_{\text{s}} }}} \right. \kern-0pt} {T_{\text{s}} }}} \right\rfloor = n_{0} \), we can obtain

$$ \begin{aligned} \tilde{r}_{i,p} ( \tau) & = \left( {\tau - \left| {n_{0} } \right|T_{\text{s}} } \right)\sum\limits_{n = 1}^{{N_{\text{s}} - 1 - \left| {n_{0} } \right|}} {\sum\limits_{m = 0}^{{N_{\text{c}} - 1}} {\sum\limits_{{m^{\prime} = 0}}^{{N_{\text{c}} - 1}} {\left\{ \begin{aligned} & a_{i} \left( {m,n + \left| {n_{0} } \right|,p} \right)a_{i}^{*} \left( {m^{\prime } ,n - 1,p} \right) \\ & \cdot \exp \left\{ { - j\pi \Delta f\left[ {\left( {m + m^{\prime}} \right)\left| {n_{0} } \right| + 2m^{\prime } } \right]T_{\text{s}} } \right\} \\ & \cdot \exp \left\{ {j\pi \left( {m + m^{\prime } } \right)\Delta f\tau } \right\} \\ & \cdot \exp \left\{ { - j2\pi \left( {i - 1} \right)\left( {\left| {n_{0} } \right| + 1} \right)B_{\text{a}} T_{\text{s}} } \right\} \\ & {\text{sinc}}\left\{ {\pi \left( {m - m^{\prime } } \right)\Delta f\left( { - \left| {n_{0} } \right|T_{\text{s}} + \tau } \right)} \right\} \\ \end{aligned} \right.} } } \\ & \quad + \left[ {\left( {\left| {n_{0} } \right| + 1} \right)T_{\text{s}} - \tau } \right]\sum\limits_{n = 0}^{{N_{\text{s}} - 1 - \left| {n_{0} } \right|}} {\sum\limits_{m = 0}^{{N_{\text{c}} - 1}} {\sum\limits_{{m^{\prime} = 0}}^{{N_{\text{c}} - 1}} {\left\{ \begin{aligned} & a_{i} \left( {m,n + \left| {n_{0} } \right|,p} \right)a_{i}^{*} \left( {m^{\prime } ,n,p} \right) \\ & \cdot \exp \left\{ {j\pi \Delta f\left[ {\left( {m - m^{\prime } } \right) - \left( {m + m^{\prime } } \right)\left| {n_{0} } \right|} \right]T_{\text{s}} } \right\} \\ & \cdot \exp \left\{ {j2\pi \left( {m + m^{\prime } } \right)\Delta f\frac{\tau }{2}} \right\} \\ & \cdot \exp \left\{ { - j2\pi \left( {i - 1} \right)\left| {n_{0} } \right|B_{\text{a}} T_{\text{s}} } \right\} \\ & {\text{sinc}}\left\{ {\pi \left( {m - m^{\prime } } \right)\Delta f\left[ {\left( {\left| {n_{0} } \right| + 1} \right)T_{\text{s}} - \tau } \right]} \right\} \\ \end{aligned} \right.} } } \\ \end{aligned} $$
(A.2c)

Since \( a_{i} \left( {m,n,p} \right) \) varies with the communication information, the expected value of \( \tilde{r}_{i,p} ( \tau) \) is interested. Assume that \( a_{i} \left( {m,n,p} \right) \) is random phase code with uniform distribution. The following can be achieved

$$ {\text{E}}\left[ {a_{i} \left( {m,n,p} \right)a_{i}^{*} \left( {m^{\prime } ,n^{\prime } ,p^{\prime } } \right)} \right] = \left\{ {\begin{array}{*{20}c} {1,} & {m = m^{\prime } ,n = n^{\prime } ,p = p^{\prime } } \\ {0,} & {\text{else}} \\ \end{array} } \right. $$
(A.3)

For \( - T_{\text{p}} < \tau \le 0 \), according to (A.3), \( {\text{E}}\left[ {\tilde{r}_{i,p} ( \tau)} \right] \) can be expressed as

$$ {\text{E}}\left[ {\tilde{r}_{i,p} ( \tau)} \right] = \left\{ {\begin{array}{*{20}l} {N_{\text{s}} \left[ {T_{\text{s}} + \tau } \right]\exp \left\{ {j\pi \left( {N_{\text{c}} - 1} \right)\Delta f\tau } \right\}\frac{{\sin \left( {\pi N_{\text{c}} \Delta f\tau } \right)}}{{\sin \left( {\pi \Delta f\tau } \right)}},} \hfill & { - T_{\text{s}} < \tau } \hfill \\ {0,} \hfill & {\text{else}} \hfill \\ \end{array} } \right. $$
(A.4a)

For \( 0 < \tau < T_{\text{p}} \), \( {\text{E}}\left[ {\tilde{r}_{i,p} ( \tau)} \right] \) can be described as

$$ {\text{E}}\left[ {\tilde{r}_{i,p} ( \tau)} \right] = \left\{ {\begin{array}{*{20}l} {N_{\text{s}} \left[ {T_{\text{s}} - \tau } \right]\exp \left\{ {j\pi \left( {N_{\text{c}} - 1} \right)\Delta f\tau } \right\}\frac{{\sin \left( {\pi N_{\text{c}} \Delta f\tau } \right)}}{{\sin \left( {\pi \Delta f\tau } \right)}},} \hfill & {\tau \le T_{\text{s}} } \hfill \\ {0,} \hfill & {\text{else}} \hfill \\ \end{array} } \right. $$
(A.4b)

The (A.2a), (A.4a) and (A.4b) are summarized as

$$ {\text{E}}\left[ {\tilde{r}_{i,p} ( \tau)} \right] = N_{\text{s}} \left[ {T_{\text{s}} - \tau } \right]\exp \left\{ {j\pi \left( {N_{\text{c}} - 1} \right)\Delta f\tau } \right\}\frac{{\sin \left( {\pi N_{\text{c}} \Delta f\tau } \right)}}{{\sin \left( {\pi \Delta f\tau } \right)}}{\text{rect}}\left[ {\frac{{T_{\text{s}} + \tau }}{{2T_{\text{s}} }}} \right] $$
(A.5)

For \( \tilde{r^{\prime}}_{i,p} ( \tau) = {{\tilde{r}_{i,p} ( \tau)} \mathord{\left/ {\vphantom {{\tilde{r}_{i,p} ( \tau)} {r_{i,p} \left( 0 \right)}}} \right. \kern-0pt} {r_{i,p} \left( 0 \right)}} \), we can obtain that

$$ \begin{aligned} {\text{E}}\left[ {\tilde{r^{\prime}}_{i,p} ( \tau)} \right] & = \frac{{N_{\text{s}} \left[ {T_{\text{s}} - \tau } \right]}}{{N_{\text{c}} N_{\text{s}} T_{\text{s}} }}\exp \left\{ {j\pi \left( {N_{\text{c}} - 1} \right)\Delta f\tau } \right\}\frac{{\sin \left( {\pi N_{\text{c}} \Delta f\tau } \right)}}{{\sin \left( {\pi \Delta f\tau } \right)}}{\text{rect}}\left[ {\frac{{T_{\text{s}} + \tau }}{{2T_{\text{s}} }}} \right], \\ & \quad i = 1,2, \ldots ,M;\quad p = 0,1, \ldots ,N_{\text{p}} - 1 \\ \end{aligned} $$
(A.6)

Appendix B

2.1 CRB derivation for range and angle

Assume that the sample rate is \( f_{\text{s}} \), each pule is sampled by \( N \) times, the received signal at each antenna is divided into \( M \) channels and the band-pass of the \( q \)th channel is \( \left[ {\left( {q - 1} \right)N_{\text{c}} \Delta f\;,\;qN_{\text{c}} \Delta f} \right] \), for \( q = 1,2, \ldots ,M \). The received signals of the \( p \)th pulse, \( q \)th channel, and \( i \)th antenna can be expressed as

$$ \begin{aligned} {\mathbf{y}}_{i,q,p} & = {\mathbf{s}}_{q,p} \sigma^{\prime } e^{{j\frac{2\pi }{\lambda }\left( {q - 1} \right)d\sin \theta_{\text{t}} }} e^{{j\frac{2\pi }{\lambda }\left( {i - 1} \right)d\sin \theta_{\text{r}} }} + {\mathbf{n}}_{i,q,p} , \\ & \quad i = 1,2, \ldots \quad ,M;\quad q = 1,2, \ldots ,M;\quad p = 0,1, \ldots ,N_{p} - 1 \\ \end{aligned} $$
(B.1)

where \( {\mathbf{y}}_{i,q,p} = \left[ {y_{i,q,p} \left( 1 \right)y_{i,q,p} \left( 2 \right) \ldots y_{i,q,p} \left( N \right)} \right]^{\text{T}} \) is an \( N \times 1 \) vector containing the samples of echoes; \( \theta_{\text{r}} = \theta_{\text{t}} = \theta \); \( {\mathbf{n}}_{i,q,p} = \left[ {n_{i,q,p} \left( 1 \right) \ldots n_{i,q,p} \left( 2 \right) \ldots n_{i,q,p} \left( N \right)} \right]^{\text{T}} \) is an \( N \times 1 \) Gaussian noise vector; and \( {\mathbf{s}}_{q,p} = \left[ {\begin{array}{*{20}c} {s_{q,p} \left( 1 \right)} & {s_{q,p} \left( 2 \right)} & \cdots & {s_{q,p} \left( N \right)} \\ \end{array} } \right]^{\text{T}} \) is an \( N \times 1 \) signal vector with

$$ \begin{aligned} s_{q,p} \left( l \right) & = \sum\limits_{n = 0}^{{N_{\text{s}} - 1}} {\left\{ \begin{aligned} & {\text{rect}}\left[ {\frac{l}{{f_{\text{s}} T_{\text{s}} }} - \frac{{nT_{\text{s}} + pT_{\text{r}} }}{{T_{\text{s}} }}} \right]\exp \left\{ { - j2\pi f_{\text{c}} \frac{{l_{\tau } }}{{f_{\text{s}} }}} \right\} \\ & \exp \left\{ {j2\pi \left( {q - 1} \right)N_{\text{c}} \Delta f\left( {\frac{l}{{f_{\text{s}} }} - nT_{\text{s}} - pT_{\text{r}} } \right)} \right\} \\ & \sum\limits_{m = 0}^{{N_{\text{c}} - 1}} {a\left( {m,n,p} \right)\exp \left\{ {j2\pi m\Delta f\left( {\frac{l}{{f_{\text{s}} }} - nT_{\text{s}} - pT_{\text{r}} } \right)} \right\}} \\ \end{aligned} \right.} \\ & \quad l = 1,2, \ldots N;\quad q = 1,2, \ldots ,M;\quad p = 1,2, \ldots ,N_{p} \\ \end{aligned} $$
(B.2)

where \( l_{\tau } = \left\lfloor {{{2Rf_{\text{s}} } \mathord{\left/ {\vphantom {{2Rf_{\text{s}} } c}} \right. \kern-0pt} c}} \right\rfloor \).Stacking received data of \( M^{2} \) channels into a vector yields

$$ {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{p} \left( l \right) = \sigma^{\prime } {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} }}_{p} \left( {l - l_{\tau } } \right) \odot {\mathbf{a}}_{\text{tr}} \left( \theta \right) + {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{n} }}_{p} \left( l \right),\quad p = 0,1, \ldots ,N_{p} - 1 $$
(B.3)

where \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} }}_{p} \left( l \right) = \left[ {s_{1,p} \left( l \right)s_{2,p} \left( l \right)\; \ldots \;s_{M,p} \left( l \right)} \right]^{\text{T}} \otimes {\mathbf{1}}_{M} \) is an \( M^{2} \times 1 \) vector containing the transmitted signals; \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{p} \left( l \right) = \left[ {y_{1,1,p} \left( l \right)\; \ldots y_{M,1,p} \left( l \right) \ldots y_{M,M,p} \left( l \right)} \right]^{\text{T}} \) is an \( M^{2} \times 1 \) vector containing the received signal; and \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{n} }}_{p} \left( l \right) = \left[ {n_{1,1,p} \left( l \right) \ldots n_{2,1,p} \left( l \right) \ldots n_{M,1,p} \left( l \right) \ldots \ldots } \right]^{\text{T}} \) is an \( M^{2} \times 1 \) zero-mean complex random vector with the covariance matrix \( \sigma^{2} {\mathbf{I}}_{{M^{2} }} \). \( \sigma^{2} = N_{0} f_{\text{s}} \) is noise power and \( N_{0} \) is flat power spectral density of white noise. Assume that the \( N_{\text{p}} \) random vectors \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{n} }}_{0} \left( l \right),{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{n} }}_{1} \left( l \right), \ldots ,{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{n} }}_{{N_{\text{p}} - 1}} \left( l \right) \) are statistical independent.

The probability density function of the received signals \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{0} \left( {\tau ,\theta } \right),{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{1} \left( {\tau ,\theta } \right), \ldots ,{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{{N_{\text{p}} - 1}} \left( {\tau ,\theta } \right) \) is

$$ \begin{aligned} p\left( {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{0} ,{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{1} , \ldots ,{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{{N_{\text{p}} - 1}} \left| {\tau ,\theta } \right.} \right) & = \frac{1}{{\pi^{{N + N_{\text{p}} + M^{2} }} \left| {\sigma^{2} {\mathbf{I}}_{{M^{2} }} } \right|^{{N + N_{\text{p}} }} }} \\ & \exp \left\{ {\frac{ - 1}{{\sigma^{2} }}\sum\limits_{p = 0}^{{N_{\text{p}} - 1}} {\sum\limits_{l = 1}^{N} {\left\{ \begin{aligned} \left[ {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{p} \left( l \right) - \sigma^{\prime } {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} }}_{p} \left( {l - l_{\tau } } \right) \odot {\mathbf{a}}_{\text{tr}} \left( \theta \right)} \right]^{\text{H}} \hfill \\ \left[ {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{p} \left( l \right) - \sigma^{\prime } {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} }}_{p} \left( {l - l_{\tau } } \right) \odot {\mathbf{a}}_{\text{tr}} \left( \theta \right)} \right] \hfill \\ \end{aligned} \right.} } } \right\} \\ \end{aligned} $$
(B.4)

The log-likelihood function of \( p\left( {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{0} ,{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{1} , \ldots ,{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{{N_{\text{p}} - 1}} \left| {\tau ,\theta } \right.} \right) \) is

$$ \begin{aligned} L\left( {\tau ,\theta } \right) & = - \ln \left( {\pi^{{N + N_{\text{p}} + M^{2} }} \left| {\sigma^{2} {\mathbf{I}}_{{M^{2} }} } \right|^{{N + N_{\text{p}} }} } \right) \\ & \quad - \frac{1}{{\sigma^{2} }}\sum\limits_{p = 0}^{{N_{\text{p}} - 1}} {\sum\limits_{l = 1}^{N} {\left\{ \begin{aligned} \left[ {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{p} \left( l \right) - \sigma^{\prime } {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} }}_{p} \left( {l - l_{\tau } } \right) \odot {\mathbf{a}}_{\text{tr}} \left( \theta \right)} \right]^{\text{H}} \hfill \\ \left[ {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{p} \left( l \right) - \sigma^{\prime } {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} }}_{p} \left( {l - l_{\tau } } \right) \odot {\mathbf{a}}_{\text{tr}} \left( \theta \right)} \right] \hfill \\ \end{aligned} \right.} } \\ \end{aligned} $$
(B.5)

To obtain the CRB, the Fisher information matrix \( {\mathbf{J}}\left( {\tau ,\theta } \right) \) is required to be calculated, which is defined as (Scharf 1991)

$$ {\mathbf{J}}\left( {\tau ,\theta } \right) = - \left[ {\begin{array}{*{20}c} {{\text{E}}\left\{ {\frac{{\partial^{2} L\left( {\tau ,\theta } \right)}}{{\partial \tau^{2} }}} \right\}} & {{\text{E}}\left\{ {\frac{{\partial^{2} L\left( {\tau ,\theta } \right)}}{\partial \tau \partial \theta }} \right\}} \\ {{\text{E}}\left\{ {\frac{{\partial^{2} L\left( {\tau ,\theta } \right)}}{\partial \theta \partial \tau }} \right\}} & {{\text{E}}\left\{ {\frac{{\partial^{2} L\left( {\tau ,\theta } \right)}}{{\partial \theta^{2} }}} \right\}} \\ \end{array} } \right] $$
(B.6)

As the sample interval \( \Delta t = 1 /f_{\text{s}} \to 0 \), the terms in Fisher information matrix are

$$ J_{11} = - {\text{E}}\left\{ {\frac{{\partial^{2} L\left( {\tau ,\theta } \right)}}{{\partial \tau^{2} }}} \right\} = \frac{2}{{N_{0} }}\sum\limits_{p = 0}^{{N_{\text{p}} - 1}} {\left| {\sigma^{\prime } } \right|^{2} {\varvec{\upomega}}_{p}^{\text{H}} {\mathbf{1}}_{{M^{2} }} } $$
(B.7a)
$$ J_{12} = - {\text{E}}\left\{ {\frac{{\partial^{2} L\left( {\tau ,\theta } \right)}}{\partial \tau \partial \theta }} \right\} = \frac{2}{{N_{0} }}\text{Re} \left\{ {\sum\limits_{p = 0}^{{N_{\text{p}} - 1}} {\left| {\sigma^{\prime } } \right|^{2} {\mathbf{s}}_{{{\text{E}},p}}^{\text{H}} \left[ {\frac{{{\text{d}}{\mathbf{a}}_{\text{tr}}^{*} \left( \theta \right)}}{{{\text{d}}\theta }} \odot {\mathbf{a}}_{\text{tr}} \left( \theta \right)} \right]} } \right\} $$
(B.7b)
$$ J_{21} = - {\text{E}}\left\{ {\frac{{\partial^{2} L\left( {\tau ,\theta } \right)}}{\partial \theta \partial \tau }} \right\} = - {\text{E}}\left\{ {\frac{{\partial^{2} L\left( {\tau ,\theta } \right)}}{\partial \tau \partial \theta }} \right\} = J_{12} $$
(B.7c)
$$ J_{22} = - {\text{E}}\left\{ {\frac{{\partial^{2} L\left( {\tau ,\theta } \right)}}{{\partial \theta^{2} }}} \right\} = \frac{2}{{N_{0} }}\sum\limits_{p = 0}^{{N_{\text{p}} - 1}} {\left| {\sigma^{\prime } } \right|^{2} } {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\varepsilon } }}_{p}^{\text{H}} \left[ {\frac{{{\text{d}}{\mathbf{a}}_{\text{tr}}^{*} \left( \theta \right)}}{{{\text{d}}\theta }} \odot \frac{{{\text{d}}{\mathbf{a}}_{\text{tr}} \left( \theta \right)}}{{{\text{d}}\theta }}} \right] $$
(B.7d)

The elements in the diagonal of \( {\mathbf{J}}^{ - 1} \left( {\tau ,\theta } \right) \) are the CRBs of the corresponding \( \tau \) and \( \theta \), i.e.,

$$ {\text{CRB}}( \tau){ = }\frac{{J_{22} }}{{J_{11} J_{22} - J_{12} J_{21} }} $$
(B.8a)
$$ {\text{CRB}}\left( \theta \right){ = }\frac{{J_{11} }}{{J_{11} J_{22} - J_{12} J_{21} }} $$
(B.8b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liao, G., Yang, Z. et al. Joint range and angle estimation for an integrated system combining MIMO radar with OFDM communication. Multidim Syst Sign Process 30, 661–687 (2019). https://doi.org/10.1007/s11045-018-0576-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0576-2

Keywords

Navigation