Skip to main content
Log in

Context adaptive residual coding for efficient compression of MCEEG employing wave atom transforms

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Extensive use of electroencephalogram (EEG) signals in diversified fields has put in a lot of thrust in research for devices capable of operating at constrained power and storage levels. In this paper, a simple and novel method for compression of multichannel EEG (MCEEG) signal is proposed. Here, wave atom transform of MCEEG data followed by quantization, thresholding, and arithmetic coding of context adaptive residuals and threshold coefficients is performed to achieve compression with good signal quality. The proposed method has been tested on a wide range of publicly available databases and results indicate that the algorithm is able to achieve good signal compression without degrading the signal quality. The proposed system provides an average compression ratio of 14.01 with a percentage root mean square difference of 1.91% across different data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akansu, A. N., Serdijn, W. A., & Selesnick, I. W. (2010). Emerging applications of wavelets: A review. Physical Communication, 3(1), 1–18.

    Article  Google Scholar 

  • Antoniol, G., & Tonella, P. (1997). EEG data compression techniques. IEEE Transactions on Biomedical Engineering, 44(2), 105–114.

    Article  Google Scholar 

  • Anusha, Z., Jinu, J., & Geevarghese, T. (2013). Automatic EEG artifact removal by independent component analysis using critical EEG rhythms. In IEEE international conference control communication and computing (ICCC) (pp. 364–367).

  • Aviyente, S. (2007). Compressed sensing framework for EEG compression. In 2007 IEEE/SP 14th workshop on statistical signal processing, Madison, WI, USA (pp. 181–184). https://doi.org/10.1109/SSP.2007.4301243.

  • Bazán-Prieto, C., Blanco-Velasco, M., Cárdenas-Barrera, J., & Cruz-Roldán, F. (2012). Analysis of tractable distortion metrics for EEG compression applications. Physiological Measurement, 33(7), 1237–1247.

    Article  Google Scholar 

  • Birvinskas, D., Jusas, V., Martisius, I., & Damasevicius, R. (2015). Fast DCT algorithms for eeg data compression in embedded systems. Computer Science and Information Systems, 12(1), 49–62.

    Article  Google Scholar 

  • Blankertz, B., Curio, G., & Müller, K.-R. (2002). Classifying single trial EEG: towards brain computer interfacing. In T. G. Diettrich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems (NIPS 01) (Vol. 14). Cambridge: MIT Press.

    Google Scholar 

  • Blankertz, B., Müller, K.-R., Krusienski, D., Schalk, G., Wolpaw, J. R., Schlögl, A., et al. (2006). The BCI competition III: Validating alternative approachs to actual BCI problems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 153–159.

    Article  Google Scholar 

  • Capurro, I., Lecumberry, F., Martín, A., Ramírez, I., Rovira, E. & Seroussi, G. (2014). Low-complexity, multi-channel, lossless and near-lossless EEG compression. In 2014 Proceedings of 22nd European signal processing conference (EUSIPCO), pp. 2040–2044, 1–5 September 2014.

  • Cárdenas-Barrera, J. L., Lorenzo-Ginori, J. V., & Rodríguez-Valdivia, E. (2004). A wavelet-packet based algorithm for EEG signal compression. International on Health and Social Care, 29(1), 15–27.

    Google Scholar 

  • Comon, Pierre. (1994). Independent component analysis: A new concept? Signal Processing, 36(3), 287–314.

    Article  MATH  Google Scholar 

  • Dauwels, J., Srinivasan, K., Reddy, M. R., & Cichocki, A. (2013). Near-lossless multichannel EEG compression based on matrix and tensor decompositions. IEEE Journal of Biomedical and Health Informatics, 17(3), 708–714.

    Article  Google Scholar 

  • Demanet, L. (2006). Curvelets, wave atoms, and wave equations. Thesis, California Institute of Technology, 2006.

  • Demanet, L., & Ying, L. (2007). Wave atoms and sparsity of oscillatory patterns. Applied and Computational Harmonic Analysis, 23(3), 368–387.

    Article  MathSciNet  MATH  Google Scholar 

  • Demanet, L., & Ying, L. (2009). Wave atoms and time upscaling of wave equations. Numerische Mathematik, 113(1), 1–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D., & Johnstone, I. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90, 1200–1224.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D., & Johnstone, I. (1998). Minimax estimation via wavelet shrinkage. Annals of Statistics, 26, 879–921.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. Ch., Mark, R. G., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), E215–E220.

    Article  Google Scholar 

  • Hejrati, A. F. B., & Mohammadi, F. A. (2017). Efficient lossless multichannel EEG compression based on channel clustering. Biomedical Signal Processing and Control, 31, 295–300.

    Article  Google Scholar 

  • Huffman, D.A. (1952). A method for the construction of minimum-redundancy codes. In Proceedings of the I.R.E., September 1952, pp 1098–1102.

  • Jinu, J., Geevarghese, T., & Purushothaman, S. (2014). EEG based automatic detection of drowsy state. In L. P. Suresh, S. S. Dash, & B. K. Panigrahi (Eds.), Artificial intelligence and evolutionary algorithms in engineering systems (Vol. 324, pp. 65–72). India: Springer.

    Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis, Series: Springer Series in Statistics (2nd ed., Vol. 29, p. 28). New York: Springer.

    Google Scholar 

  • Laurent, D., & Lexing, Y. (2007). Curvelets and wave atoms for mirror-extended images. In Proceedings of SPIE 6701, Wavelets XII, 67010 J, 20 September 2007.

  • Leinonen, M, Hewett, R. J., Demanet, L., Zhang, X., & Ying, L. (2013). High-dimensional wave atoms and compression of seismic data sets. In SEG technical program expanded abstracts (pp. 3591–3596).

  • Lin, L., Meng, Y., Chen, J. P., & Li, Z. B. (2015). Multichannel EEG compression based on ICA and SPIHT. Biomedical Signal Processing and Control, 20, 45–51.

    Article  Google Scholar 

  • Memon, N., Kong, X., & Cinkler, J. (1999). Context-based lossless and nearlossless compression of EEG signals. IEEE Transactions on Biomedical Engineering, 3(3), 231–238.

    Article  Google Scholar 

  • Mihajlovic, V., Grundlehner, B., Vullers, R., & Penders, J. (2015). Wearable, wireless EEG solutions in daily life applications: What are we missing? IEEE Journal of Biomedical and Health Informatics, 19(1), 6–21.

    Article  Google Scholar 

  • Morabito, F. C., Labate, D., Bramanti, A., La Foresta, F., Morabito, G., Palamara, I., et al. (2013). Enhanced compressibility of EEG signal in Alzheimer’s disease patients. IEEE Sensors Journal, 13(9), 3255–3262.

    Article  Google Scholar 

  • Naeem, M., Brunner, C., Leeb, R., Graimann, B., & Pfurtscheller, G. (2006). Seperability of four-class motor imagery data using independent components analysis. Journal of Neural Engineering, 3, 208–216.

    Article  Google Scholar 

  • Niedermeyer, E., & da Silva, F. L. (2005). Electroencephalography: Basic principles, clinical applications and related fields (5th ed.). Philadelphia, USA: Lippincott Williams and Wilkins.

    Google Scholar 

  • Said, A. (2003). Arithmetic coding. In K. Sayood (Ed.), Lossless compression handbook (pp. 447–455). New York: Academic Press.

    Google Scholar 

  • Said, A., & Pearlman, W. A. (1996). A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243–250.

    Article  Google Scholar 

  • Srinivasan, K., Dauwels, J., & Reddy, M. R. (2011). A two-dimensional approach to lossless EEG compression. Biomedical Signal Processing and Control, 6, 387–394.

    Article  Google Scholar 

  • Srinivasan, K., Dauwels, Justin, & Reddy, M. R. (2013). Multichannel EEG compression: Wavelet-based image and volumetric coding approach”. IEEE Journal of Biomedical and Health Informatics, 17(1), 113–120.

    Article  Google Scholar 

  • Sriraam, N. (2009). Context-based near-lossless compression of EEG signals using neural network predictors. International Journal of Electronics and Communications (AEÜ), 63, 311–320.

    Article  Google Scholar 

  • Sriraam, N. (2012). Correlation dimension based lossless compression of EEG signals. Biomedical Signal Processing and Control, 7(4), 379–388.

    Article  Google Scholar 

  • Sriraam, N., & Eswaran, C. (2006). Context based error modeling for lossless compression of EEG signals using neural networks. Journal of Medical Systems, 30, 439–448.

    Article  Google Scholar 

  • Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Annals of Statistics, 9, 1135–1151.

    Article  MathSciNet  MATH  Google Scholar 

  • Tangermann, M., Müller, K.-R., Aertsen, A., Birbaumer, N., Braun, C., Brunner, C., et al. (2012). Review of the BCI competition IV. Frontiers in Neuroscience, 6, 55. https://doi.org/10.3389/fnins.2012.00055.

    Article  Google Scholar 

  • Titus, G., & Sudhakar, M. S. (2017). A simple and efficient algorithm operating with linear time for MCEEG data compression. Australasian Physical and Engineering Sciences in Medicine, 40(3), 759–768.

    Article  Google Scholar 

  • Wongsawat, Y., Oraintara, S., & Rao, K. R.. (2006). Integer sub-optimal Karhunen–Loeve transform for multi-channel lossless EEG compression. In 14th European signal processing conference (EUSIPCO 2006-IEEE), Florence, Italy, September 4–8, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Sudhakar.

Ethics declarations

Conflict of interest

The authors have no, conflict of interest, affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this article.

Human and animals rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titus, G., Sudhakar, M.S. Context adaptive residual coding for efficient compression of MCEEG employing wave atom transforms. Multidim Syst Sign Process 30, 841–855 (2019). https://doi.org/10.1007/s11045-018-0582-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0582-4

Keywords

Navigation