Skip to main content
Log in

On the stability and the stabilization of linear discrete repetitive processes

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This article deals with stability and stabilization issues for linear two-dimensional (2D) discrete models. More precisely, we focus on repetitive processes and Roesser models. Within the algebraic analysis approach to linear systems theory, we first show how a given linear repetitive process can be transformed into an equivalent linear Roesser model. We then prove that the structural stability is preserved by this equivalence transformation. This enables us to design new approaches for stabilizing linear repetitive processes by means of existing methods for computing a state feedback control law stabilizing a linear 2D discrete Roesser model. We also show that we can interpret the stability along the pass of a linear repetitive process as its structural stability. This implies that one of our new approaches can be applied to stabilize along the pass a linear repetitive process which is only stable from pass to pass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In a more general case, T can be a non-square matrix: see, e.g., Bachelier et al. (2017a). Nevertheless, it would bring nothing in the present article so T is here assumed to be square.

  2. The dimensions of the blocks are naturally consistent with the splittings of \(\eta \) and \(\eta '\). In particular, this block structure implies \(y'=y\), i.e., the two systems have the same output.

  3. All the numerical values given in the example can be considered as exact, i.e., neither truncated nor rounded. It means that we consider \({\mathbb K}={\mathbb {Q}}\).

  4. The LMI solver works with floating-point numbers but the entries of the matrices exposed here can be considered as (exact) rational numbers since we check the results by performing an a posteriori stability analysis with the algorithms proposed in Bouzidi et al. (2015), Bouzidi and Rouillier (2016) and dedicated to rational values.

References

  • Bachelier, O., & Cluzeau, T. (September 2017). Digression on the equivalence between Linear 2D discrete repetitive processes and Roesser Models. In Proceedings of 10th international workshop on multidimensional (nD) systems (nDS’17), Zielona Góra, Poland.

  • Bachelier, O., Cluzeau, T., David, R., Silva-Alvarez, F. J., Yeganefar, N., & Yeganefar, N. (2018a). Structural stability, asymptotic stability, and exponential stability for linear multidimensional systems: The good, the bad, and the ugly. International Journal of Control. https://doi.org/10.1080/00207179.2017.1390258.

  • Bachelier, O., Cluzeau, T., David, R., & Yeganefar, N. (2016). Structural stability and equivalence of linear 2D discrete systems. In Proceedings of IFAC joint symposium SSSC and TDS, Istanbul, Turkey.

  • Bachelier, O., Cluzeau, T., David, R., & Yeganefar, N. (2017a). Structural stabilization of linear 2D discrete systems using equivalence transformations. Multidimensional Systems and Signal Processing, 28(4), 1629–1652.

    Article  MathSciNet  MATH  Google Scholar 

  • Bachelier, O., Paszke, W., Yeganefar, N., & Mehdi, D. (2018b). On stabilization of 2D Roesser models. IEEE Transaction on Automatic Control. https://doi.org/10.1109/TAC.2017.2767282.

  • Bachelier, O., Paszke, W., Yeganefar, N., Mehdi, D., & Cherifi, A. (2014). Towards LMI necessary and sufficient stability conditions for 2D Roesser models. Research report. http://www.lias-lab.fr/perso/olivierbachelier/.

  • Bachelier, O., Yeganefar, N., Mehdi, D., & Paszke, W. (September 2015). State feedback structural stabilization of 2D discrete Roesser models. In Proceedings of 9th international workshop on multidimensional (nD) systems (nDS’15), Vila Real, Portugal.

  • Bachelier, O., Yeganefar, N., Mehdi, D., & Paszke, W. (2017b). On stabilization of 2D Roesser models. IEEE Transactions on Automatic Control, 62(5), 2505–2511.

    Article  MathSciNet  MATH  Google Scholar 

  • Basu, S. (2002). Multidimensional causal, stable, perfect reconstruction filter banks. IEEE Transaction on Circuits and Systems I: Fundamental Theory and Applications, 49(6), 832–843.

    Article  MathSciNet  MATH  Google Scholar 

  • Bose, N. K. (1982). Applied multidimensional system theory. New York: Van Nostrand Reinhold Comp.

    MATH  Google Scholar 

  • Bose, N. K. (1984). Multidimensional system theory. Dordrecht: D. Reidel Publishing Comp.

    Google Scholar 

  • Boudellioua, M. S. (2012). Strict system equivalence of 2D linear discrete state space models. Journal of Control Science and Engineering, 2012, 6.

    Article  MathSciNet  MATH  Google Scholar 

  • Boudellioua, M. S., Gałkowski, K., & Rogers, E. (2017a). On the connection between discrete linear repetitive processes and 2D discrete linear systems. Multidimensional Systems and Signal Processing. https://doi.org/10.1007/s11045-016-0454-8.

  • Boudellioua, M. S., Gałkowski, K., Rogers, E. (2017b). Reduction of discrete linear repetitive processes to nonsingular Roesser models via elementary operations. In Proceedings of IFAC 2017 World Congress, Toulouse, France.

  • Bouzidi, Y., Quadrat, A., & Rouillier, F. (September 2015). Computer algebra methods for testing the structural stability of multidimensional systems. In Proceedings of 9th international workshop on multidimensional (nD) systems (nDS’15), Vila Real, Portugal.

  • Bouzidi, Y., & Rouillier, F. (2016). Certified algorithms for proving the structural stability of two dimensional systems possibly with parameters. In Proceedings of 22nd international symposium on mathematical theory of networks and systems (MTNS).

  • Boyd, S., El Ghaoui, L., Féron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. In SIAM studies in applied mathematics, Vol. 15, USA.

  • Bristow, D. A., Therayil, M., & Alleyne, A. G. (2006). A survey of iterative learning control. IEEE Control Systems, 26(3), 96–114.

    Article  Google Scholar 

  • Chyzak, F., Quadrat, A., & Robertz, D. (2005). Effective algorithms for parametrizing linear control systems over Ore algebras. Applicable Algebra in Engineering, Communication and Computing, 16, 319–376.

    Article  MathSciNet  MATH  Google Scholar 

  • Chyzak, F., Quadrat, A., & Robertz, D. (2007). OreModules: A symbolic package for the study of multidimensional linear systems, Lecture notes in control and information science, Vol. 352, Springer, pp. 233–264. http://pages.saclay.inria.fr/alban.quadrat/OreModules.html.

  • Cluzeau, T. (September 2015). A constructive algebraic analysis approach to the equivalence of multidimensional linear systems. In Proceedings of 9th international workshop on multidimensional (nD) systems (nDS’15), Vila Real, Portugal.

  • Cluzeau, T., & Quadrat, A. (2008). Factoring and decomposing a class of linear functional systems. Linear Algebra Applications, 428, 324–381.

    Article  MathSciNet  MATH  Google Scholar 

  • Cluzeau, T., & Quadrat, A. (2009). OreMorphisms: A homological algebraic package for factoring, reducing and decomposing linear functional systems. Lecture notes in control and information science Vol. 388, Springer, pp. 179–194. http://pages.saclay.inria.fr/alban.quadrat/OreMorphisms.html.

  • Cluzeau, T., & Quadrat, A. (2016). Equivalence of linear functional systems. Rapport de Recherche INRIA (RR-9000). In The special issue “algebraic and symbolic computation methods in dynamical systems” in the Springer series advances in delays and dynamics, 2018.

  • Cluzeau, T., Quadrat, A., & Tõnso, M. (2015). OreAlgebraicAnalysis : A mathematica package for the algorithmic study of linear functional systems. OreAlgebraicAnalysis project. http://pages.saclay.inria.fr/alban.quadrat/OreAlgebraicAnalysis.html.

  • Dabkowski, P., Gałkowski, K., Rogers, E., & Kummert, A. (2009). Strong practical stability and stabilization of discrete linear repetitive processes. Multidimensional Systems and Signal Processing, 20(4), 311–331.

    Article  MathSciNet  MATH  Google Scholar 

  • D’Andrea, R., & Dullerud, G. E. (2003). Distributed control design for spatially interconnected systems. IEEE Transaction on Automatic Control, 48(9), 1478–1495.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudgeon, D. E., & Merseau, R. M. (1994). Multidimensional digital signal processing. Prentice Hall signal processing series. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Fornasini, E., & Marchesini, G. (1978). Doubly indexed dynamical systems: State space models and structural properties. Mathematical Systems Theory, 12(1), 59–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Fuhrmann, P. A. (1977). On strict system equivalence and similarity. International Journal of Control, 25(1), 5–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Gałkowski, K., & Wood, J. (2001). Multidimensional signals, circuits and systems. London: Taylor and Francis.

    Google Scholar 

  • Gałkowski, K., Paszke, W., Rogers, E., Xu, S., Lam, J., & Owens, D. H. (2003). Stability and control of differential repetitive processes using an LMI setting. IEEE Transaction on Circuits and Systems—II: Analog and Digital Signal Processing, 50, 662–666.

    Google Scholar 

  • Gałkowski, K., Rogers, E., Xu, S., Lam, J., & Owens, D. H. (2002). LMIs—A fundamental tool in analysis and controller design for discrete linear repetitive processes. IEEE Transaction on Circuits and Systems—I: Fundamental Theory And Applications, 49(6), 768–778.

    Article  MathSciNet  MATH  Google Scholar 

  • Givone, D. D., & Roesser, R. P. (1972). Multidimensional linear iterative circuits—General properties. IEEE Transactions on Computers, 21, 1067–1073.

    Article  MathSciNet  MATH  Google Scholar 

  • Hładowski, L., Gałkowski, K., Cai, Z., Rogers, E., Freeman, C. T., & Lewin, P. L. (2010). Experimentally supported 2D systems based iterative learning control law design for error convergence and performance. Control Engineering Practice, 18(4), 339–348.

    Article  Google Scholar 

  • Justice, J. H., & Shanks, J. L. (1973). Stability criterion for N-dimensional digital filters. IEEE Transaction on Automatic Control, 18(3), 284–286.

    Article  MathSciNet  MATH  Google Scholar 

  • Kaczorek, T. (1985). Two-dimensional linear systems. Berlin: Springer.

    MATH  Google Scholar 

  • Li, L., Xu, L., & Lin, Z. (2013). Stability and stabilization of linear multidimensional discrete systems in the frequency domain. International Journal of Control, 86(11), 1969–1989.

    Article  MathSciNet  MATH  Google Scholar 

  • Malgrange, B. (1962). Systèmes différentiels à coefficients constants. Séminaire Bourbaki, 1962(63), 1–11.

    Google Scholar 

  • Moore, K. L. (1993). Iterative learning control for deterministic systems. London: Springer.

    Book  MATH  Google Scholar 

  • Oberst, U. (1990). Multidimensional constant linear systems. Acta Applicandae Mathematicae, 20, 1–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Oberst, U., & Scheicher, M. (2007). A survey of (BIBO) stability and (proper) stabilization of multidimensional input/output systems. Radon Series on Computational and Applied Mathematics, 3, 151–190.

    MathSciNet  MATH  Google Scholar 

  • Oberst, U., & Scheicher, M. (2014). The asymptotic stability of stable and time-autonomous discrete multidimensional behaviors. Mathematics of Control, Signals, and Systems, 26(2), 215–258.

    Article  MathSciNet  MATH  Google Scholar 

  • Owens, D. H., Amann, N., Rogers, E., & French, M. (2000). Analysis of linear iterative learning control schemes-A 2D systems/repetitive processes approach. Multidimensional Systems and Signal Processing, 11(1–2), 125–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Paszke, W. (2005). Analysis and synthesis of multidimensional system classes using linear matrix inequality methods. Lecture notes in control and computer science, Vol. 8, Ph.D. thesis of the University of Zielona Góra.

  • Paszke, W., Merry, R., & van de Molengraft, R. (July 2007). Iterative learning control by two-dimensional system theory applied to a motion system. In Proceedings of 26th American control conference (ACC), pp. 5484–5489, New York, USA.

  • Paszke, W., Rogers, E., & Gałkowski, K. (2016a). LMI-based gain scheduled ILC design for linear parameter-varying systems. In Proceedings of American control conference (ACC), Boston, USA.

  • Paszke, W., Rogers, E., & Gałkowski, K. (2016b). Experimentally verified generalized KYP lemma based iterative learning control design. Control Engineering Practice, 53, 57–67.

    Article  Google Scholar 

  • Quadrat, A. (2010). An introduction to constructive algebraic analysis and its applications. Les cours du CIRM, Journées Nationales de Calcul Formel, 1(2), 281–471.

    Article  Google Scholar 

  • Rabenstein, R. (2000). Partial differential equation models for continuous multidimensional systems. In IEEE international symposium on circuits and systems (ISCAS), Geneva, Switzerland.

  • Ramos, J. A., & Mercère, G. (2017). Image modeling based on a 2-D stochastic subspace system identification algorithm. Multidimensional Systems and Signal Processing, 28(4), 1133–1165.

    Article  MathSciNet  MATH  Google Scholar 

  • Roesser, R. P. (1975). A discrete state-space model for linear image processing. IEEE Transaction on Automatic Control, 20(1), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers, E., Gałkowski, K., & Owens, D. H. (2007). Control systems theory and applications for linear repetitive processes., Lecture notes in control and information science Berlin: Springer.

    MATH  Google Scholar 

  • Rogers, E., Gałkowski, K., Paszke, W., Moore, K. L., Bauer, P. H., Hładowski, L., et al. (2015). Multidimensional control systems: Case studies in design and evaluation. Multidimensional Systems and Signal Processing, 26(4), 895–939.

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers, E., & Owens, D. H. (1992). Stability analysis for linear repetitive processes., Lecture notes in control and information science London: Springer.

    Book  MATH  Google Scholar 

  • Rotman, J. J. (1979). An introduction to homological algebra. Cambridge: Academic Press.

    MATH  Google Scholar 

  • Scheicher, M., & Oberst, U. (2008). Multidimensional BIBO stability and Jury’s conjecture. Mathematics of Control, Signals, and Systems, 20(1), 81–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Scherer, C. W. (2016). Lossless \({H}_{\infty }\)-synthesis for 2D systems. Systems and Control Letters, 95, 35–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Sumanasena, B., & Bauer, P. H. (2011). Realization using the Roesser model for implementations in distributed grid sensor networks. Multidimensional Systems and Signal Processing, 22(1–3), 131–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Willems, J. C. (1987). From time series to linear system (parts I–II–III). In Automatica,, Vol. 22, pp. 561-580 (1986); Vol. 22, pp. 675–694 (1986); Vol. 23, pp. 87–115.

  • Wood, J., Rogers, E., & Owens, D. H. (2001). Behaviours, modules, and duality. In K. Galkowski, & J. Wood (Eds.), Multidimensional signals, circuits and systems. Systems and control, Ch. 3 (pp. 45–56). London: Taylor and Francis.

  • Zerz, E. (2000). On strict system equivalence for multidimensional systems. International Journal of Control, 73(6), 495–504.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the members of the ANR-13-BS03-0005 (MSDOS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bachelier.

Additional information

This work was supported by the ANR-13-BS03-0005 (MS-DOS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachelier, O., Cluzeau, T. & Yeganefar, N. On the stability and the stabilization of linear discrete repetitive processes. Multidim Syst Sign Process 30, 963–987 (2019). https://doi.org/10.1007/s11045-018-0583-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0583-3

Keywords

Navigation