Skip to main content
Log in

Randomized neural network based signature for color texture classification

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Color texture analysis is an important subject in computer vision research. This paper presents an innovative and powerful color texture analysis method based on a randomized neural network. This approach uses the weights of the neural network as attributes for a color feature vector. Experiments were performed in three well-established benchmarks (Vistex, USPtex and Outex) and two rotated versions of these datasets (Vistex and Outex). The results were promising, surpassing the accuracies of most of the compared methods. This achievement allows us to affirm that the proposed approach is a valuable tool to be included in color texture analysis field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Kadi, O. S. (2010). Texture measures combination for improved meningioma classification of histopathological images. Pattern Recognition, 43(6), 2043–2053.

    Google Scholar 

  • Anamandra, S. H., & Chandrasekaran, V. (2016). COLOR CHILD: A novel color image local descriptor for texture classification and segmentation. Pattern Analysis and Applications, 19(3), 821–837.

    MathSciNet  Google Scholar 

  • Aptoula, E. (2014). Remote sensing image retrieval with global morphological texture descriptors. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 3023–3034.

    Google Scholar 

  • Backes, A. R., Casanova, D., & Bruno, O. M. (2012). Color texture analysis based on fractal descriptors. Pattern Recognition, 45(5), 1984–1992. http://scg.ifsc.usp.br/dataset/USPtex.php.

  • Backes, A. R., Casanova, D., & Bruno, O. M. (2013). Texture analysis and classification: A complex network-based approach. Information Sciences, 219, 168–180.

    Google Scholar 

  • Batard, T., Berthier, M., & Saint-Jean, C. (2010). Clifford-Fourier transform for color image processing (pp. 135–162). London: Springer.

    MATH  Google Scholar 

  • Bianconi, F., Fernandez, A., Gonzalez, E., Caride, D., & Calvino, A. (2009). Rotation-invariant colour texture classification through multilayer CCR. Pattern Recognition Letters, 30(8), 765–773.

    Google Scholar 

  • Calvetti, D., Morigi, S., Reichel, L., & Sgallari, F. (2000). Tikhonov regularization and the L-curve for large discrete ill-posed problems. Journal of Computational and Applied Mathematics, 123(1), 423–446.

    MathSciNet  MATH  Google Scholar 

  • Chowdhury, A., Kautz, E., Yener, B., & Lewis, D. (2016). Image driven machine learning methods for microstructure recognition. Computational Materials Science, 123, 176–187.

    Google Scholar 

  • da Silva, N. R., da Silva Oliveira, M. W., de Almeida Filho, H. A., Pinheiro, L. F. S., Rossatto, D. R., Kolb, R. M., et al. (2016). Leaf epidermis images for robust identification of plants. Scientific Reports, 6(25), 994.

    Google Scholar 

  • Everitt, B. S., & Dunn, G. (2001). Applied multivariate analysis (2nd ed.). London: Arnold.

    MATH  Google Scholar 

  • Fernández, A., Álvarez, M. X., & Bianconi, F. (2013). Texture description through histograms of equivalent patterns. Journal of Mathematical Imaging and Vision, 45(1), 76–102.

    MathSciNet  MATH  Google Scholar 

  • Florindo, J. B., Sikora, M. S., Pereira, E. C., & Bruno, O. M. (2013). Characterization of nanostructured material images using fractal descriptors. Physica A-Statistical Mechanics and its Applications, 392(7), 1694–1701.

    MathSciNet  Google Scholar 

  • Fukunaga, K. (1990). Introduction to statistical pattern recognition (2nd ed.). San Diego, CA: Academic Press.

    MATH  Google Scholar 

  • Hoang, M. A., Geusebroek, J. M., & Smeulders, A. W. M. (2005). Color texture measurement and segmentation. Signal Processing, 85(2), 265–275.

    MATH  Google Scholar 

  • Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.

    Google Scholar 

  • Khan, F. S., Anwer, R. M., van de Weijer, J., Felsberg, M., & Laaksonen, J. (2015). Compact color-texture description for texture classification. Pattern Recognition Letters, 51, 16–22.

    Google Scholar 

  • Lehmer, D. H. (1951). Mathematical methods in large scale computing units. Annals Comp Laboratory Harvard University, 26, 141–146.

    MathSciNet  MATH  Google Scholar 

  • Li, X. Z., Williams, S., & Bottema, M. J. (2014). Texture and region dependent breast cancer risk assessment from screening mammograms. Pattern Recognition Letters, 36, 117–124.

    Google Scholar 

  • Liu, G. H., Li, Z., Zhang, L., & Xu, Y. (2011). Image retrieval based on micro-structure descriptor. Pattern Recognition, 44(9), 2123–2133.

    Google Scholar 

  • Losson, O., Porebski, A., Vandenbroucke, N., & Macaire, L. (2013). Color texture analysis using CFA chromatic co-occurrence matrices. Computer Vision and Image Understanding, 117(7), 747–763.

    Google Scholar 

  • Manjunath, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837–842.

    Google Scholar 

  • Masoudi, B. (2016). Classification of color texture images based on modified WLD. International Journal of Multimedia Information Retrieval, 5(2), 117–124.

    Google Scholar 

  • Mennesson, J., Saint-Jean, C., & Mascarilla, L. (2014). Color Fourier–Mellin descriptors for image recognition. Pattern Recognition Letters, 40, 27–35.

    Google Scholar 

  • Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., & Huovinen, S. (2002a). Outex: New framework for empirical evaluation of texture analysis algorithms. In: International conference on pattern recognition, pp 701–706

  • Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002b). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions Pattern on Analysis and Machine Intelligence, 24(7), 971–987.

    MATH  Google Scholar 

  • Palm, C. (2004). Color texture classification by integrative co-occurrence matrices. Pattern Recognition, 37(5), 965–976.

    Google Scholar 

  • Pao, Y. H., & Takefuji, Y. (1992). Functional-link net computing: Theory, system architecture, and functionalities. IEEE Computer Journal, 25(5), 76–79.

    Google Scholar 

  • Pao, Y. H., Park, G. H., & Sobajic, D. J. (1994). Learning and generalization characteristics of the random vector functional-link net. Neurocomputing, 6(2), 163–180.

    Google Scholar 

  • Park, S. K., & Miller, K. W. (1988). Random number generators: Good ones are hard to find. Communications of the ACM, 31(10), 1192–1201.

    MathSciNet  Google Scholar 

  • Paschos, G., & Petrou, M. (2003). Histogram ratio features for color texture classification. Pattern Recognition Letters, 24(1–3), 309–314.

    Google Scholar 

  • Picard, R., Graczyk, C., Mann, S., Wachman, J., Picard, L., & Campbell, L. (1995). Vision texture database. Media Laboratory. Cambridge: MIT. http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html

  • Porebski, A., Vandenbroucke, N., & Macaire, L. (2008). Haralick feature extraction from LBP images for color texture classification. In: Image processing theory, tools and applications, pp 1–8

  • Porebski, A., Vandenbroucke, N., & Macaire, L. (2013). Supervised texture classification: Color space or texture feature selection? Pattern Analysis and Applications, 16(1), 1–18.

    MathSciNet  Google Scholar 

  • Sá Junior, J. J. M., & Backes, A. R. (2016). ELM based signature for texture classification. Pattern Recognition, 51, 395–401.

    Google Scholar 

  • Sá Junior, J. J. M., Backes, A. R., Rossatto, D. R., Kolb, R. M., & Bruno, O. M. (2011). Measuring and analyzing color and texture information in anatomical leaf cross sections: An approach using computer vision to aid plant species identification. Botany, 89(7), 467–479.

    Google Scholar 

  • Sá Junior, J. J. M., Backes, A. R., & Cortez, P. C. (2014). Color texture classification using shortest paths in graphs. IEEE Transactions on Image Processing, 23(9), 3751–3761.

    MathSciNet  MATH  Google Scholar 

  • Scharcanski, J. (2005). Stochastic texture analysis for monitoring stochastic processes in industry. Pattern Recognition Letters, 26(11), 1701–1709.

    Google Scholar 

  • Schmidt, WF., Kraaijveld, MA., & Duin, RPW. (1992). Feedforward neural networks with random weights. In: Proceedings, 11th IAPR international conference on pattern recognition (Vol.II.) Conference B: Pattern recognition methodology and systems, pp 1–4

  • Sima, H., & Guo, P. (2014). Texture superpixels merging by color-texture histograms for color image segmentation. KSII Transactions on Internet and Information Systems, 8(7), 2400–2419.

    Google Scholar 

  • Tang, Z., Su, Y., Er, M. J., Qi, F., Zhang, L., & Zhou, J. (2015). A local binary pattern based texture descriptors for classification of tea leaves. Neurocomputing, 168, 1011–1023.

    Google Scholar 

Download references

Acknowledgements

Jarbas Joaci de Mesquita Sá Junior thanks CNPq (National Council for Scientific and Technological Development, Brazil, Grant Nos. 152054/2016-2 and 302183/2017-5) for the financial support of this work. André R. Backes gratefully acknowledges the financial support of CNPq (Grant #302416/2015-3) and FAPEMIG (Foundation to the Support of Research in Minas Gerais, Grant #APQ-03437-15). Odemir M. Bruno gratefully acknowledges the financial support of CNPq (307797/2014-7) and FAPESP (14/08026-1 and 16/18809-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarbas Joaci de Mesquita Sá Junior.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sá Junior, J.J.M., Backes, A.R. & Bruno, O.M. Randomized neural network based signature for color texture classification. Multidim Syst Sign Process 30, 1171–1186 (2019). https://doi.org/10.1007/s11045-018-0600-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0600-6

Keywords

Navigation