Skip to main content
Log in

Improving security by utilizing hybrid deterministic phase mask and orthogonal encoding

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

An asymmetric double image encryption system has been suggested to safeguard the algorithm in Fresnel Transform (FrT) from intruders by using Hybrid Deterministic Phase Masks, Structured Phase Mask (SPM) and Orthogonal encoding technique. The original DRPE technique used random phase masks which is not very strong against many attacks. In comparison to novel Phase Truncated Fourier Transform based scheme, safety of encryption and decryption is elevated with applying the dissimilar types of masks in Fresnel domain which in turn enhances the robustness of DRPE scheme. SPM helps in increasing the key length and the deterministic phase masks (DM) helps to transport key components with condensed size, improved performance and inferior intricacy. The ciphered images are further encoded using Hadamard matrix that has orthogonal property. The orthogonal encoding system aids in refining the security of the DRPE lined operations. Further, the simulation result visibly validates that the DRPE using orthogonal encoding is much more protected. Numerical outcomes help in verifying that our scheme is susceptible to numerous attacks. Security potential of planned scheme is resolute by the computational examination and safety investigation using histograms and Occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alfalou, A., & Brosseau, C. (2009). Optical image compression and encryption methods. Advances in Optics and Photonics, 1, 589–636.

    Google Scholar 

  • Anshula, H. (2021). Singh, “Security enrichment of an asymmetric optical image encryption-based devil’s vortex Fresnel lens phase mask and lower upper decomposition with partial pivoting in gyrator transform domain.” Optical Quantum Electronics, 53(4), 1–23.

    Google Scholar 

  • Barrera, J. F., Henao, R., & Torroba, R. (2005a). Optical encryption method using toroidal zone plates. Optics Communication, 248, 35–40.

    Google Scholar 

  • Barrera, J. F., Henao, R., & Torroba, R. (2005b). Fault tolerances using toroidal zone plate encryption. Optics Communication, 256, 489–494.

    Google Scholar 

  • Carrnicer, A., Montes- Usategui, M., Arcos, S., & Juvells, I. (2005). Vulnerability to chosen-ciphertext attacks of optical encryption schemes based on double random phase keys. Optics Letters, 30, 1644–1646.

    Google Scholar 

  • Chen, L., & Zhao, D. (2006). Optical image encryption with Hartley transforms. Optics Letters, 31, 3438–3440.

    Google Scholar 

  • Chen, X. D., Liu, Q., Wang, J., & Wang, Q. H. (2018). “ Asymmetric encryption of multi-image based on compressed sensing and feature fusion with high quality image reconstruction. Optics & Laser Technology, 107, 302–312.

    Google Scholar 

  • Davis, J. A., McNamara, D. E., & Cottrell, D. M. (2000). Image Processing with the radial Hilbert transform:Theory and experiments. Optics Letters, 25, 0146–9592.

    Google Scholar 

  • Frauel, Y., Castro, A., Naughton, T. J., & Javidi, B. (2007). Resistance of the double random phase encryption against various attacks. Optics Express, 15(16), 10253–10265.

    Google Scholar 

  • Girija, R., & Singh, H. (2018). A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition. Optical and Quantum Electronics, 50(210), 1–24.

    Google Scholar 

  • Goodman, J. W. (1996). Introduction to Fourier Optics (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Hartley, R. V. L. (1942). A more symmerical Fourier analysis applied to transmission problems. In: Proc. of IRE (Vol. 30(3), pp. 144–150).

  • Javidi, B. (2005). Optical and Digital Techniques for Information Security. Springer Science Business Media.

    Google Scholar 

  • Khurana, M., & Sing, H. (2017c). Asymmetric optical image encryption using random Hilbert mask based on fast Walsh Hadamard transform. In: International Conference on Computing and Communication Technologies for Smart Nation (IC3TCN) IEEE (pp. 374–377).

  • Khurana, M., & Singh, H. (2017a). An asymmetric image encryption based on phase truncated hybrid transform. 3D Research, 8(28). https://doi.org/10.1007/s13319-017-0137-8

  • Khurana, M., & Singh, H. (2017b). Optical image encryption using Fresnel zone plate mask based on fast walsh hadamard transform. AIP Conference Proceedings, 1953(1), 140043.

    Google Scholar 

  • Kumar, R., & Bhaduri, B. (2017). Optical image encryption using Kronecker product and hybrid phase masks. Optics and Laser Technology, 95, 51–55.

    Google Scholar 

  • Lee, I. H., & Cho, M. (2014). Double random phase encryption based orthogonal encoding technique for color images. Journal of the Optical Society Korea, 18(2), 129–133.

    Google Scholar 

  • Lee, I. H., & Cho, M. (2015). Security enhancement for double—random phase encryption using orthogonally encoded image and electronically synthesized key data. Chinese Optics Letter, 13(1), 010603.

    Google Scholar 

  • Liu, S., Guo, C., & Sheridan, J. T. (2014). A review of optical image encryption techniques. Optics and Laser Technology, 57, 327–342.

    Google Scholar 

  • Matoba, O., Nomura, T., Perez-Cabre, E., Millan, M. S., & Javidi, B. (2009). Optical techniques for information security. Proceedings of the IEEE, 97, 1128–1148.

    Google Scholar 

  • Peng, X., Zhang, P., Wei, H., & Yu, B. (2006). Known plaintext attack on optical encryption based on double random phase keys. Optics Letters, 31, 1044–1046.

    Google Scholar 

  • Qin, W., & Peng, X. (2010). Asymmetric cryptosystem based on phase truncated Fourier transforms. Optics Letters, 35, 118–120.

    Google Scholar 

  • Rajput, S. K., & Nishchal, N. K. (2014). Fresnel domain nonlinear optical encryption scheme based on Gerchberg-Saxton phase retreival algorithm. Applied Optics, 53, 418–425.

    Google Scholar 

  • Rajput, S. K., & Nishchal, N. (2012). Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask. Applied Optics, 51, 5377–5786.

    Google Scholar 

  • Rajput, S. K., & Nishchal, N. K. (2013). Known plaintext attack on encryption domain independent optical Asymmetric cryptosystem. Optics Communication, 309, 231–235.

    Google Scholar 

  • Refregier, P., & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding. Optics Letters, 20, 767–769.

    Google Scholar 

  • Rodrigo, J. A., Alieva, T., & Calvo, M. L. (2007a). Gyrator transform: Properties and applications. Optics Express, 15, 2190–2203.

    Google Scholar 

  • Rodrigo, J. A., Alieva, T., & Calvo, M. L. (2007b). Applications of gyrator transform for image processing. Optics Communication, 278, 279–284.

    Google Scholar 

  • Singh, H. (2016a). “Cryptosystem for securing image encryption using structured phase masks in Fresnel Wavelet transform domain. 3D Research, 7(34). https://doi.org/10.1007/s13319-016-01

  • Singh, H. (2016b). Optical cryptosystems of color images using random phase masks in fractional wavelet transform domain. AIP Conference Proceedings, 1728, 020063.

    Google Scholar 

  • Singh, H. (2017). Non linear optical double image encryption using random- optical vortex in fractional Hartley domain. Optica Applicata, 47(4), 557–578.

    Google Scholar 

  • Singh, H. (2018). Watermarking image encryption using deterministic phase mask and singular value decomposition in fractional Mellin transform domain”. IET Image Process, 12(11), 1994–2001.

    Google Scholar 

  • Singh, N., & Sinha, A. (2010). Optical image encryption using improper Hartley transforms and chaos. Optik, 121, 918–925.

    Google Scholar 

  • Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2015). Optical image encryption using devil’s vortex toroidal lens in the Fresnel transform domain. Int. Jour. of Opt., 926135, 1–13.

    Google Scholar 

  • Singh, P., Yadav, A. K., & Singh, K. (2017). Color image encryption using affine transform in fractional Hartley domain. Optica Applicata, 47(3), 421–433.

    Google Scholar 

  • Situ, G., & Zhang, J. (2004). Double random- phase encoding in the Fresnel domain. Optics Letters, 29, 1584–1586.

    Google Scholar 

  • Unnikrishnan, G., & Singh, K. (2000). Double random fractional Fourier domain encoding for optical security. Optical Engineering, 39(11), 2853–2859.

    Google Scholar 

  • Vashisth, S., Singh, H., Yadav, A. K., & Singh, K. (2014). Devil’s vortex phase structure as frequency plane mask for image encryption using the fractional Mellin transform. International Journal of Optics, 728056, 1–9.

    Google Scholar 

  • Vilardy, J. M., Torres, C. O., & Jimenez, C. J. (2013). Double image encryption method using the Arnold transform in the fractional Hartley domainin. Proceedings of SPIE. https://doi.org/10.1117/12.2022216

    Article  Google Scholar 

  • Wang, J., Li, X., Hu, Y., & Wang, Q. H. (2018a). Phase-retrieval attack free cryptosystem based on cylindrical asymmetric diffraction and double-random phase encoding. Optics Communications, 410, 468–474.

    Google Scholar 

  • Wang, J., Wang, Q. H., & Hu, Y. (2018b). Image encryption using compressive sensing and detour cylindrical diffraction. IEEE Photonics Journal, 10(3), 7801014.

    Google Scholar 

  • Wu, J., Zhang, L., & Zhou, N. (2010). Image encryption based on the multiple order discrete fractional cosine transform. Optics Communication, 283(9), 1720–1725.

    Google Scholar 

  • Wu, C., Wang, Y., Chen, Y., Wang, J., & Wang, Q. H. (2019). Asymmetric encryption of multiple-image based on compressed sensing and phase-truncation in cylindrical diffraction domain. Optics Communications, 431, 203–209.

    Google Scholar 

  • Yadav, P. L., & Singh, H. (2017). Optical asymmetric cryptosystem centered on fractional Fourier domain using Hilbert phase mask. In International conference on computing and communication technologies for smart nation (IC3TCN) (pp. 173–178). IEEE.

  • Yadav, P. L., & Singh, H. (2018). Optical double image hiding in fractional Hartley transform using structured phase filter and Arnold transform. 3D Research, 9(20). https://doi.org/10.1007/s13319-018-0172-0

  • Yadav, S., & Singh, H. (2021a). Unsymmetric image encryption using lower-upper decomposition and structured phase mask in the fractional Fourier domain. Recent Advances in Computer Science Communication, 14(8), 2691–2704.

    Google Scholar 

  • Yadav, S., & Singh, H. (2021b). Image enhancement using hybrid Fresnel phase mask, hybrid mask and singular value decomposition in affine and Fresnel transform domain. Recent Advances in Computer Science Communication, 14(6), 1987–2000.

    Google Scholar 

  • Yadav, S., & Singh, H. (2021c). Security augmentation grounded on Fresnel and arnold transforms using hybrid chaotic structured phase mask. IET Image Processing, 15(5), 1042–1052.

    Google Scholar 

  • Zamrani, W., Ahouzi, E., Lizana, A., Campos, J., & Yzuel, M. J. (2016). Optical image encryption technique based on deterministic masks. Optics Engineering, 55, 103108.

    Google Scholar 

  • Zhao, D., Li, X., & Chen, L. (2008). Optical image encryption with redefined fractional Hartley transform. Optics Communication, 281, 5326–5329.

    Google Scholar 

  • Zhou, N., Dong, T., & Wu, J. (2010). Novel image encryption algorithm based on multiple -parameter discrete fractional random transform. Optics Communication, 283(15), 3037–3042.

    Google Scholar 

  • Zhou, N. R., Wang, Y., & Gong, L. (2011). Novel Optical image encryption scheme based on fractional Mellin transform. Optics Communication, 284, 3234–3242.

    Google Scholar 

  • Zhu, Z., Chen, X. D., Wu, C., Wang, J., & Wang, W. (2020). An asymmetric color-image cryptosystem based on spiral phase transformation and equal modulus decomposition. Optics & Laser Technology, 126, 106106.

    Google Scholar 

Download references

Acknowledgements

The author desires to thank the board of The NorthCap University for their encouragement and enthusiasm that provided support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Singh, H. Improving security by utilizing hybrid deterministic phase mask and orthogonal encoding. Multidim Syst Sign Process 33, 99–120 (2022). https://doi.org/10.1007/s11045-021-00788-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-021-00788-7

Keywords

Navigation