Skip to main content
Log in

Sparse spectrum fitting algorithm using signal covariance matrix reconstruction and weighted sparse constraint

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Although sparse spectrum fitting algorithm has good multi-target resolution, the performance is decreased under the influence of strong interference. In response to this problem, a sparse spectrum fitting algorithm using signal covariance matrix reconstruction and weighted sparse constraint is proposed. The algorithm uses iterative adaptive approach (IAA) to estimate spatial spectrum and divide signal region. The signal region is integrated to reconstruct the signal covariance matrix. On the other hand, the \(l_{1}\) norm constraint is weighted in different angles by the inverse spatial spectrum estimated by IAA. Finally, the spatial spectrum of the signal region is fitted to detect and resolve the weak targets. Simulation and theoretical analysis show that the proposed algorithm has outform performance under the influence of strong interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Edelmann, G. F., & Gaumond, C. F. (2011). Beamforming using compressive sensing. The Journal of the Acoustical Society of America, 130(4), 232–237.

    Article  Google Scholar 

  • Grant, M. C., Boyd, S. P. (2016). CVX MATLAB software for disciplined convex programming. http://www.stanford.edu/boyd/cvx

  • The Marine Physical Laboratory. (1996). The SWellEx-96 Experiment. http://swellex96.ucsd.edu.

  • Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.

    Article  MathSciNet  Google Scholar 

  • Xenaki, A., Gerstoft, P., & Mosegaard, K. (2014). Compressive beamforming. The Journal of the Acoustical Society of America, 136(1), 260–271.

    Article  Google Scholar 

  • Yang, L., Yang, Y., Zhu, J. (2016). Source localization based on sparse spectral fitting and spatial filtering. In Oceans. IEEE

  • Yang, Y., Zhang, Y., & Yang, L. (2018). Wideband sparse spatial spectrum estimation using matrix filter with nulling in a strong interference environment. The Journal of the Acoustical Society of America, 143(6), 3891–3898.

    Article  Google Scholar 

  • Yardibi, T., Li, J., Stoica, P., et al. (2010). Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares. IEEE Transactions on Aerospace and Electronic Systems, 46(1), 425–443.

    Article  Google Scholar 

  • Zheng, J., & Kaveh, M. (2013). Sparse spatial spectral estimation: A covariance fitting algorithm, performance and regularization. IEEE Transactions on Signal Processing, 61(11), 2767–2777.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The convergence proof for the iterative algorithm in Table 1

Appendix: The convergence proof for the iterative algorithm in Table 1

The negative log-likelihood function of \(\left\{ {{\varvec{x}}(k)} \right\}_{k = 1}^{k = K}\) is

$$ {\text{In}}\left| {\varvec{R}} \right| + {\text{tr}}({\varvec{R}}^{ - 1} {\hat{\varvec{R}}}) $$
(A1)

where \({\hat{\varvec{R}}} = \frac{1}{K}\sum\limits_{k = 1}^{k = K} {{\varvec{x}}(k){\varvec{x}}^{{\text{H}}} } (k)\) is sample covariance matrix, \({\text{tr}}()\) is the trace of a matrix. Using matrix inversion lemma together with \({\varvec{Q}}(\theta_{l} ) = {\varvec{R}} - P(\theta_{l} ){\varvec{a}}(\theta_{l} ){\varvec{a}}^{{\text{H}}} (\theta_{l} )\), (A1) is equivalent to (A2)

$$ f(P(\theta_{l} )) = {\text{In}}\left( {1 + P(\theta_{l} ){\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{Q}}^{ - 1} (\theta_{l} ){\varvec{a}}(\theta_{l} )} \right) - \frac{{P(\theta_{l} ){\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{Q}}^{ - 1} (\theta_{l} ){\hat{\varvec{R}}\varvec{Q}}^{ - 1} (\theta_{l} ){\varvec{a}}(\theta_{l} )}}{{1 + P(\theta_{l} ){\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{Q}}^{ - 1} (\theta_{l} ){\varvec{a}}(\theta_{l} )}} $$
(A2)

Setting the first derivative of (A2) with respect to \(P(\theta_{l} )\), to zero, gives

$$ \tilde{P}(\theta_{l} ) = \frac{{{\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{Q}}^{ - 1} (\theta_{l} )({\hat{\varvec{R}}} - {\varvec{Q}}(\theta_{l} )){\varvec{Q}}^{ - 1} (\theta_{l} ){\varvec{a}}(\theta_{l} )}}{{\left( {{\varvec{a}}^{H} (\theta_{l} ){\varvec{Q}}^{ - 1} (\theta_{l} ){\varvec{a}}(\theta_{l} )} \right)^{2} }} $$
(A3)

The second derivative of (A2), with respect to \(P(\theta_{l} )\),is

$$ f^{^{\prime\prime}} (P(\theta_{l} )) = \frac{{\left[ {{\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{Q}}^{ - 1} (\theta_{l} ){\varvec{a}}(\theta_{l} )} \right]^{2} }}{{\left[ {1 + P(\theta_{l} ){\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{Q}}^{ - 1} (\theta_{l} ){\varvec{a}}(\theta_{l} )} \right]^{2} }} > 0 $$
(A4)

This means that \(\tilde{P}(\theta_{l} )\) is the unique minimizer of \(f(P(\theta_{l} ))\).Since \(\tilde{P}(\theta_{l} )\) represents power, it showed been nonnegative. By using the matrix inversion lemma and the relationship between \({\varvec{Q}}(\theta_{l} )\) and \({\varvec{R}}\), (A3) become

$$ \tilde{P}(\theta_{l} ) = \max (0,P(\theta_{l} ) + \frac{{{\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{Q}}^{ - 1} (\theta_{l} )({\hat{\varvec{R}}} - {\varvec{R}}){\varvec{R}}^{ - 1} {\varvec{a}}(\theta_{l} )}}{{\left( {{\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{R}}^{ - 1} {\varvec{a}}(\theta_{l} )} \right)^{2} }}) $$
(A5)

The (A5) will be locally convergent if \({\varvec{R}}\) is recalculated by each updated \(P(\theta_{l} )\) because of the cyclical maximization of the likelihood function (Yardibi et al., 2010), (A5) can rewritten as (assuming \(\tilde{P}(\theta_{l} ) \ge 0\))

$$ P(\theta_{l} ) = P(\theta_{l} ) - \frac{1}{{{\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{R}}^{ - 1} {\varvec{a}}(\theta_{l} )}} + \frac{{{\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{R}}^{ - 1} {\hat{\varvec{R}}\varvec{R}}^{ - 1} {\varvec{a}}(\theta_{l} )}}{{\left( {{\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{R}}^{ - 1} {\varvec{a}}(\theta_{l} )} \right)^{2} }} $$
(A6)

Since the output of capon beamformer is \(P(\theta_{l} ) \approx \frac{1}{{{\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{R}}^{ - 1} {\varvec{a}}(\theta_{l} )}}\), the (A6) become

$$ \tilde{P}(\theta_{l} ) = \frac{{{\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{R}}^{{ - 1}} {\hat{\varvec{R}}\varvec{R}}^{ - 1} {\varvec{a}}(\theta_{l} )}}{{\left( {{\varvec{a}}^{{\text{H}}} (\theta_{l} ){\varvec{R}}^{ - 1} {\varvec{a}}(\theta_{l} )} \right)^{2} }} \ge 0 $$
(A7)

that is step (4) (5) in Table 1, since (A7) is obtained from (A5), which is locally convergent, thus (A7) is locally convergent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, H. & Ma, Q. Sparse spectrum fitting algorithm using signal covariance matrix reconstruction and weighted sparse constraint. Multidim Syst Sign Process 33, 807–817 (2022). https://doi.org/10.1007/s11045-021-00811-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-021-00811-x

Keywords

Navigation