Skip to main content
Log in

Frequency estimation using distributed adaptive algorithm with noisy regressor

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

A smart discrete Fourier transform based modified diffusion technique is proposed in this paper that estimates the frequency in presence of regressor noise. This technique explores iterative relationship between the consecutive DFT in the form of smart DFT, and employs least mean square algorithm to measure and track the frequency. Multiple sensor nodes are employed to explore the time and space diversity following diffusion technique to improve frequency estimation. The classical diffusion algorithm is modified to address the presence of noise in regressor data. The efficacy of the modified algorithm is presented here following mathematical derivation to match both theoretical and simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdolee, R., & Champagne, B. (2016). Diffusion LMS strategies in sensor networks with noisy input data. IEEE/ACM Transactions on Networking, 24(1), 3–14. https://doi.org/10.1109/TNET.2014.2350013.

    Article  Google Scholar 

  • Abdollahi, A., & Matinfar, F. (2010). Frequency estimation: A least-squares new approach. IEEE Transactions on Power Delivery, 26(2), 790–798.

    Article  Google Scholar 

  • Ando, S. (2020). Frequency-domain prony method for autoregressive model identification and sinusoidal parameter estimation. IEEE Transactions on Signal Processing, 68, 3461–3470. https://doi.org/10.1109/TSP.2020.2998929.

    Article  MathSciNet  MATH  Google Scholar 

  • Begovic, M. M., Djuric, P. M., Dunlap, S., & Phadke, A. G. (1993). Frequency tracking in power networks in the presence of harmonics. IEEE Transactions on Power Delivery, 8(2), 480–486.

    Article  Google Scholar 

  • Cattivelli, F. S., & Sayed, A. H. (2009). Diffusion LMS strategies for distributed estimation. IEEE Transactions on Signal Processing, 58(3), 1035–1048.

    Article  MathSciNet  MATH  Google Scholar 

  • Dash, P., & Hasan, S. (2011). A fast recursive algorithm for the estimation of frequency, amplitude, and phase of noisy sinusoid. IEEE Transactions on Industrial Electronics, 58(10), 4847–4856.

    Article  Google Scholar 

  • Fan, L., Qi, G., Xing, J., Jin, J., Liu, J., & Wang, Z. (2020). Accurate frequency estimator of sinusoid based on interpolation of FFT and DTFT. IEEE Access, 8, 44373–44380.

    Article  Google Scholar 

  • Jeon, H. J., & Chang, T. G. (2010). Iterative frequency estimation based on MVDR spectrum. IEEE Transactions on Power Delivery, 25(2), 621–630.

    Article  Google Scholar 

  • Karimi-Ghartemani, M., Ooi, B. T., & Bakhshai, A. (2010). Application of enhanced phase-locked loop system to the computation of synchrophasors. IEEE Transactions on Power Delivery, 26(1), 22–32.

    Article  Google Scholar 

  • Karimi, H., Karimi-Ghartemani, M., & Iravani, M. R. (2004). Estimation of frequency and its rate of change for applications in power systems. IEEE Transactions on Power Delivery, 19(2), 472–480.

    Article  Google Scholar 

  • Kumar, S. (2021). In Proceedings of international conference on communication, circuits, and systems (pp. 533–539). Springer Singapore. https://doi.org/10.1007/978-981-33-4866-0_65

  • Li, C., & Wang, H. (2015). Distributed frequency estimation over sensor network. IEEE Sensors Journal, 15(7), 3973–3983.

    Article  Google Scholar 

  • Lopes, C. G., & Sayed, A. H. (2007). Incremental adaptive strategies over distributed networks. IEEE Transactions on Signal Processing, 55(8), 4064–4077.

    Article  MathSciNet  MATH  Google Scholar 

  • Lopes, C. G., & Sayed, A. H. (2008). Diffusion least-mean squares over adaptive networks: Formulation and performance analysis. IEEE Transactions on Signal Processing, 56(7), 3122–3136.

    Article  MathSciNet  MATH  Google Scholar 

  • Mojiri, M., Karimi-Ghartemani, M., & Bakhshai, A. (2007). Estimation of power system frequency using an adaptive notch filter. IEEE Transactions on Instrumentation and Measurement, 56(6), 2470–2477.

    Article  MATH  Google Scholar 

  • Phadke, A. G., Thorp, J. S., & Adamiak, M. G. (1983). A new measurement technique for tracking voltage phasors, local system frequency, and rate of change of frequency. IEEE Transactions on Power Apparatus and Systems, 5, 1025–1038.

    Article  Google Scholar 

  • Pradhan, A., Routray, A., & Basak, A. (2005). Power system frequency estimation using least mean square technique. IEEE Transactions on Power Delivery, 20(3), 1812–1816.

    Article  Google Scholar 

  • Qian, H., Zhao, R., & Chen, T. (2007). Interharmonics analysis based on interpolating windowed FFT algorithm. IEEE Transactions on Power Delivery, 22(2), 1064–1069.

    Article  Google Scholar 

  • Ren, J., & Kezunovic, M. (2012). A hybrid method for power system frequency estimation. IEEE Transactions on Power Delivery, 27(3), 1252–1259.

    Article  Google Scholar 

  • Sachdev, M., & Giray, M. (1985). A least error squares technique for determining power system frequency. IEEE Transactions on Power Apparatus and Systems, 2, 437–444.

    Article  Google Scholar 

  • Salcic, Z., Nguang, S. K., & Wu, Y. (2009). An improved Taylor method for frequency measurement in power systems. IEEE Transactions on Instrumentation and Measurement, 58(9), 3288–3294.

    Article  Google Scholar 

  • Schuster, S., Scheiblhofer, S., & Stelzer, A. (2008). The influence of windowing on bias and variance of DFT-based frequency and phase estimation. IEEE Transactions on Instrumentation and Measurement, 58(6), 1975–1990.

    Article  Google Scholar 

  • Serbes, A. (2019). Fast and efficient sinusoidal frequency estimation by using the DFT coefficients. IEEE Transactions on Communications, 67(3), 2333–2342. https://doi.org/10.1109/TCOMM.2018.2886355.

    Article  Google Scholar 

  • Takahashi, N., Yamada, I., & Sayed, A. H. (2010). Diffusion least-mean squares with adaptive combiners: Formulation and performance analysis. IEEE Transactions on Signal Processing, 58(9), 4795–4810.

    Article  MathSciNet  MATH  Google Scholar 

  • Terzija, V. V., Djuric, M. B., & Kovacevic, B. D. (1994). Voltage phasor and local system frequency estimation using Newton type algorithm. IEEE Transactions on Power Delivery, 9(3), 1368–1374.

    Article  Google Scholar 

  • Wang, K., Zhang, L., Wen, H., & Xu, L. (2020). A sliding-window DFT based algorithm for parameter estimation of multi-frequency signal. Digital Signal Processing, 97, 102617. https://doi.org/10.1016/j.dsp.2019.102617.

    Article  Google Scholar 

  • Wen, H., Guo, S., Teng, Z., Li, F., & Yang, Y. (2013). Frequency estimation of distorted and noisy signals in power systems by FFT-based approach. IEEE Transactions on Power Systems, 29(2), 765–774.

    Article  Google Scholar 

  • Xia, Y., Qiao, L., Yang, Q., Pei, W., & Mandic, D. P. (2017). In 2017 22nd international conference on digital signal processing (DSP) (pp. 1–5). IEEE

  • Xia, Y., Douglas, S. C., & Mandic, D. P. (2012). Adaptive frequency estimation in smart grid applications: Exploiting noncircularity and widely linear adaptive estimators. IEEE Signal Processing Magazine, 29(5), 44–54.

    Article  Google Scholar 

  • Xia, Y., He, Y., Wang, K., Pei, W., Blazic, Z., & Mandic, D. P. (2015). A complex least squares enhanced smart DFT technique for power system frequency estimation. IEEE Transactions on Power Delivery, 32(3), 1270–1278.

    Article  Google Scholar 

  • Xia, Y., & Mandic, D. P. (2011). Widely linear adaptive frequency estimation of unbalanced three-phase power systems. IEEE Transactions on Instrumentation and Measurement, 61(1), 74–83.

    Article  Google Scholar 

  • Zhang, F., Geng, Z., & Yuan, W. (2001). The algorithm of interpolating windowed FFT for harmonic analysis of electric power system. IEEE Transactions on Power Delivery, 16(2), 160–164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sananda Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of the mean for input regressor

The DFT equation is as follows

$$\begin{aligned} {X_{DFT}} = \sum \limits _{i = 0}^{L - 1} {x\left( i \right) .{e^{ - j\frac{{2\pi .i}}{L}}}} \end{aligned}$$
(A1)

The mean is derived for the first L-DFT samples of the signal, where each of DFT sample is evaluated based on its L succeeding samples

$$\begin{aligned}&E\left[ {{X_{DFT}}} \right] = {\mu _{{X_{DFT}}}} \nonumber \\&\quad = E\left[ \begin{array}{l} \sum \limits _{i = 0}^{L - 1} {x\left( i \right) .{e^{ - j\frac{{2\pi .i}}{L}}} }\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, +\sum \limits _{i = 0}^{L - 1} {x\left( {i + 1} \right) .{e^{ - j\frac{{2\pi .i}}{L}}} } \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, +\cdots + \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \sum \limits _{i = 0}^{L - 1} {x\left( {i + L - 1} \right) .{e^{ - j\frac{{2\pi .i}}{L}}}} \end{array} \right] \end{aligned}$$
(A2)

Expanding each of the \(x\left( i \right) \) sample with its L consecutive points, the above equation is rewritten as

$$\begin{aligned} \begin{array}{l} E\left[ \begin{array}{l} x\left( 0 \right) .{w^0} + x\left( 1 \right) .{w^1} +\cdots + x\left( {L - 1} \right) {w^{L - 1}}\\ \,\,\,\,\,\,\,\,\,\, + x\left( 1 \right) .{w^0} + x\left( 2 \right) .{w^1} +\cdots + x\left( L \right) {w^{L - 1}}\\ \,\,\,\,\,\,\,\,\,\, +\cdots + \\ \,\,\,\,\,\,\,\,\,\, + x\left( {L - 1} \right) .{w^0} + x\left( L \right) .{w^1} +\cdots + x\left( {2L - 1} \right) {w^{L - 1}} \end{array} \right] \end{array} \end{aligned}$$
(A3)

Rearranging the above equation in terms of common Twiddle factor, and assuming the signal to be periodic with L-points, the above equation is simplified to 0.

$$\begin{aligned} \begin{array}{l} E\left[ \begin{array}{l} \left( {x\left( 0 \right) + x\left( 1 \right) +\cdots + x\left( {L - 1} \right) } \right) {w^0}\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {x\left( 1 \right) + x\left( 1 \right) +\cdots + x\left( L \right) } \right) {w^1}\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, +\cdots +\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {x\left( {L - 1} \right) + x\left( L \right) +\cdots + x\left( {2L - 1} \right) } \right) {w^{L - 1}} \end{array} \right] = 0 \end{array} \end{aligned}$$
(A4)

Appendix B Proof of the variance for input regressor

$$\begin{aligned} {\mathop {\mathrm{var}}} \left( {{X_{DFT}}} \right) = E\left[ {{{\left( {{X_{DFT}}} \right) }^2}} \right] - {\left( {E\left[ {{X_{DFT}}} \right] } \right) ^2} = \sigma _{{X_{DFT}}}^2 \end{aligned}$$
(B1)

Evaluating the first part of the above equation

$$\begin{aligned} E \left[ {{{\left( {{X_{DFT}}} \right) }^2}} \right] = E\left[ {\left( {\sum \limits _{i = 0}^{L - 1} {x\left( i \right) .{e^{ - j\frac{{2\pi .i}}{L}}}} } \right) ^*}\left( {\sum \limits _{i = 0}^{L - 1} {x\left( i \right) .{e^{ - j\frac{{2\pi .i}}{L}}}} } \right) \right] \end{aligned}$$
(B2)

Applying the complex conjugate into first part, the equation rewritten as

$$\begin{aligned} E\left[ \left( {\sum \limits _{i = 0}^{L - 1} {{x^*}\left( i \right) .{e^{j\frac{{2\pi .i}}{L}}}} } \right) \left( {\sum \limits _{i = 0}^{L - 1} {x\left( i \right) .{e^{ - j\frac{{2\pi .i}}{L}}}} } \right) \right] \end{aligned}$$
(B3)

The input signal is a periodic signal, so assuming \(x\left( i \right) \) as \(\cos \left( {\frac{{2\pi k}}{L}} \right) \) in the above equation, it gives

$$\begin{aligned} E\left[ \left( {\sum \limits _{i = 0}^{L - 1} {\cos \left( {\frac{{2\pi i}}{L}} \right) .{e^{j\frac{{2\pi .i}}{L}}}} } \right) \left( {\sum \limits _{k = 0}^{L - 1} {\cos \left( {\frac{{2\pi k}}{L}} \right) .{e^{ - j\frac{{2\pi .k}}{L}}}} } \right) \right] \end{aligned}$$
(B4)

The above equation for L points, simplifies to

$$\begin{aligned} \frac{1}{L}\left( {\sum \limits _{i = k = 0}^{L - 1} {{{\cos }^2}\left( {\frac{{2\pi i}}{L}} \right) .} } \right) = 0.5 = \sigma _{{X_{DFT}}}^2 \end{aligned}$$
(B5)

The weight parameter w is a single tap scalar only. So, regressor matrix dimension will be of \(1 \times 1\), and the global input regressor matrix \({{\textbf {R}}}\) will be of dimension of \(N \times N\).

Appendix C Computational complexity

The computational complexity of algorithm Eq. (22) is shown in Table 1.

Table 1 Computational complexity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Sahoo, U.K. & Sahoo, A.K. Frequency estimation using distributed adaptive algorithm with noisy regressor. Multidim Syst Sign Process 33, 1185–1201 (2022). https://doi.org/10.1007/s11045-022-00837-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-022-00837-9

Keywords

Navigation