Skip to main content
Log in

A novel multi-dimensional zero-phase IIR notch filter with independently-tunable multiple notches

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

We propose a novel multi-dimensional zero-phase infinite impulse response (IIR) notch filter having multiple independently-tunable notches. The proposed notch filter employs a cascade structure with M N-dimensional (N-D) zero-phase IIR filters to realize an N-D notch filter with M notches. In the proposed filter, the frequency and the bandwidth of each notch can be independently tuned. Furthermore, the proposed filter can have odd number of notches, which may be required for complex-valued signals. Experimental results confirm that the proposed filter significantly attenuates multiple narrowband interference and provides significant improvement in the signal-to-interference ratio compared to a previously proposed three-dimensional IIR filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Antoniou, A. (2006). Digital signal processing: Signals, systems and filters. NY: McGraw-Hill.

    Google Scholar 

  • Bruton, L. T., & Bartley, N. R. (1985). Three-dimensional image processing using the concept of network resonance. IEEE Transactions on Circuits and Systems CAS, 32(7), 664–672.

    Article  Google Scholar 

  • Dansereau, D., & Bruton, L. T. (2007). A 4-D dual-fan filter bank for depth filtering in light fields. IEEE Transactions on Signal Processing, 55(2), 542–549.

    Article  MathSciNet  MATH  Google Scholar 

  • Dansereau, D. G., Pizarro, O., & Williams, S. B. (2015). Linear volumetric focus for light field cameras. ACM Transactions on Graphics, 34(2), 15:1-15:20.

    Article  Google Scholar 

  • Dudgeon, D. E., & Mersereau, R. M. (1984). Multidimensional digital signal processing. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Edussooriya, C.U.S, Bruton, L.T., Agathoklis, P. (2014a). A low-complexity 3D spatio-temporal FIR filter for enhancing linear trajectory signals. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., pp 1165–1169.

  • Edussooriya, C. U. S., Bruton, L. T., Naeini, M. A., & Agathoklis, P. (2014). Using 1-D variable fractional-delay filters to reduce the computational complexity of 3-D broadband multibeam beamformers. IEEE Transactions on Circuits and Systems II, 61(4), 279–283.

    Google Scholar 

  • Edussooriya, C. U. S., Dansereau, D. G., Bruton, L. T., & Agathoklis, P. (2015). Five-dimensional depth-velocity filtering for enhancing moving objects in light field videos. IEEE Transactions on Signal Processing, 63(8), 2151–2163.

    Article  MathSciNet  MATH  Google Scholar 

  • Edussooriya, C. U. S., Bruton, L. T., & Agathoklis, P. (2017). A novel 5-D depth-velocity filter for enhancing noisy light field videos. Multidimensional Systems and Signal Processing, 28(1), 353–369.

    Article  MATH  Google Scholar 

  • Edussooriya, C. U. S., Bruton, L. T., & Agathoklis, P. (2017). Velocity filtering for attenuating moving artifacts in videos using an ultra-low complexity 3-D linear-phase IIR filter. Multidimensional Systems and Signal Processing, 28(2), 597–616.

    Article  MATH  Google Scholar 

  • Edussooriya, C. U. S., Wijenayake, C., Madanayake, A., Liyanage, N., Premaratne, S., Vorhies, J. T., et al. (2021). Real-time light field signal processing using 4D/5D linear digital filter FPGA circuits. IEEE Transactions on Circuits and Systems II, 68(7), 2735–2741.

    Google Scholar 

  • Gullapalli, S. K., Edussooriya, C. U. S., Wijenayake, C., Dansereau, D. G., Bruton, L. T., & Madanayake, A. (2021). Wave-digital filter circuits for single-chip 4-D light field depth-based enhancement. Multidimensional Systems and Signal Processing, 32(2), 607–631.

    Article  MathSciNet  MATH  Google Scholar 

  • Gunaratne, T. K., & Bruton, L. T. (2011). Broadband beamforming of dense aperture array (DAA) and focal plane array (FPA) signals using 3D spatio-temporal filters for applications in aperture synthesis radio astronomy. Multidimensional Systems and Signal Processing, 22(1–3), 213–236.

    Article  MathSciNet  MATH  Google Scholar 

  • Gunaratne, T. K., Bruton, L., & Agathoklis, P. (2011). Broadband beamforming of focal plane array (FPA) signals using real-time spatio-temporal 3D FIR frustum digital filters. IEEE Transactions on Antennas and Propagation, 59(6), 2029–2040.

    Article  Google Scholar 

  • Haykin, S. (1985). Array signal processing. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Hinamoto, T., Ikeda, N., Nishimura, S., & Doik, A. (2002). Design of two-dimensional adaptive digital notch filters. Multidimensional Systems and Signal Processing, 13(4), 407–417.

    Article  MathSciNet  MATH  Google Scholar 

  • Jayaweera, S. S., Edussooriya, C. U. S., Wijenayake, C., Agathoklis, P., & Bruton, L. (2021). Multi-volumetric refocusing of light fields. IEEE Signal Processing Letters, 28, 31–35.

    Article  Google Scholar 

  • Lim, J. S. (1990). Two-dimensional signal and image processing. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Liyanage, N., Wijenayake, C., Edussooriya, C., Madanayake, A., Agathoklis, P., Bruton, L. T., & Ambikairajah, E. (2020). Multi-depth filtering and occlusion suppression in 4-D light fields: Algorithms and architectures. Signal Processing, 167, 1–13.

    Article  Google Scholar 

  • Nishikawa, K. (2005). Wideband multi-beam forming method using delayed array sensors and two-dimensional digital filter. Electronics and Communications in Japan (Part III: Fundamental Electronic Science, 88(12), 1–12.

    Google Scholar 

  • Pei, S. C., & Tseng, C. C. (1994). Two dimensional IIR digital notch filter design. IEEE Transactions on Circuits and Systems II, 41(3), 227–231.

    Article  Google Scholar 

  • Pei, S.C., Tseng, C.C. (2010). Design of stable two-dimensional IIR notch filter using root map. In European signal processing conference, pp 1685–1689.

  • Pei, S. C., Lu, W. S., & Tseng, C. C. (1997). Analytical two-dimensional IIR notch filter design using outer product expansion. IEEE Transactions on Circuits and Systems II, 44(9), 765–768.

    Article  Google Scholar 

  • Pei, S.C., Wu, C.L., Ding, J.J. (2003). Simplified structures for two-dimensional adaptive notch filters. In IEEE International Symposium on Circuits and Systems (ISCAS). vol 4, pp IV–416–IV–419.

  • Piyachaiyakul, N., & Charoenlarpnopparut, C. (2011). Nonseparable three-dimensional IIR notch filter design using outer product expansion. IEEE Transactions on Circuits and Systems II, 58(9), 605–609.

    Google Scholar 

  • Piyachaiyakul, N., & Charoenlarpnopparut, C. (2013). Design of three-dimensional adaptive IIR notch filters. Multidimensional Systems and Signal Processing, 24(3), 435–446.

    Article  MathSciNet  MATH  Google Scholar 

  • Powell, S.R., Chau, P.M. (1990). Time reversed filtering in real-time. In Proceedings - IEEE International Symposium on Circuits and Systems. pp 1239–1243.

  • Pulipati, S. K., Ariyarathna, V., Madanayake, A., Wijesekara, R. T., Edussooriya, C. U., & Bruton, L. T. (2019). A 16-element 2.4-GHz multibeam array receiver using 2-D spatially bandpass digital filters. IEEE Transactions on Aerospace and Electronic Systems, 55(6), 3029–3038.

  • Rader, C. M., & Jackson, L. B. (2006). Approximating noncausal IIR digital filters having arbitrary poles, including new Hilbert transformer designs, via forward/backward block recursion. IEEE Transactions on Circuits and Systems I, 53(12), 2779–2787.

    Article  MathSciNet  MATH  Google Scholar 

  • Srivastava, V., Ray, G. (2000). Design of 2D-multiple notch filter and its application in reducing blocking artifact from DCT coded image. In IEEE Engineering in Medicine and Biology Society., pp 2829–2833.

  • Tseng, C. C. (2002). Analytical design of multidimensional IIR digital notch filter. IEEE Transactions on Circuits and Systems I, 49(6), 882–887.

    Article  MathSciNet  MATH  Google Scholar 

  • Tseng, C.C., Lee, S.L. (2013). Design of two-dimensional notch filter using bandpass filter and fractional delay filter. In: Proc. IEEE Int. Symp. Circuits Syst., pp 89–92.

  • Van Trees, H. L. (2004). Optimum array processing. NY: John Wiley & Sons.

    Google Scholar 

  • Wang, Y., Ostermann, J., & Zhang, Y. Q. (2002). Video processing and communications. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Wijenayake, C., Liyanage, N., Edussooriya, C. U. S., Seatang, H., Agathoklis, P., & Bruton, L. T. (2019). Design and implementation of 5-D IIR depth velocity filters for light field video processing. IEEE Transactions on Circuits and Systems II, 66(7), 1267–1271.

    Google Scholar 

  • Wu, G., Masia, B., Jarabo, A., Zhang, Y., Wang, L., Dai, Q., et al. (2017). Light field image processing: An overview. IEEE Journal of Selected Topics in Signal Processing, 11(7), 926–954.

    Article  Google Scholar 

  • Yan, S., Sun, L., Xu, L. (2015). 2-D zero-phase IIR notch filters design based on state-space representation of 2-D frequency transformation. In Proceedings - IEEE International Symposium on Circuits and Systems, pp 2369–2370.

  • Zhang, L., Natarajan, A., & Krishnaswamy, H. (2016). Scalable spatial notch suppression in spatio-spectral-filtering MIMO receiver arrays for digital beamforming. IEEE Journal of Solid-State Circuits, 51(12), 3152–3166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chamira U. S. Edussooriya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edussooriya, C.U.S., Chandima, T. A novel multi-dimensional zero-phase IIR notch filter with independently-tunable multiple notches. Multidim Syst Sign Process 33, 1073–1086 (2022). https://doi.org/10.1007/s11045-022-00844-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-022-00844-w

Keywords

Navigation