Skip to main content

Advertisement

Log in

Application of a breeder genetic algorithm for filter optimization

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In this work we are optimizing an adaptive finite impulse response filter applied to the problem of system identification. We are proposing a breeder genetic algorithm (BGA) for performing the parametric search in highly multimoldal landscapes since in this kind of filters there exits epistiasis. The results of BGA were compared to the traditional genetic algorithm, and we found that the BGA was clearly superior (in accuracy) in most of the cases. We used the statistical least mean squared for validating the results. We suggest to hybridized both methods for real world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belanche LA (1999) A Study in Function Optimization with the Breeder Genetic Algorithm. Research Report LSI-99-36-R, Universitad Politécnica de Catalunya. http://citeseer.nj.nec.com/belanche99study.html

  • O Castillo O Montiel R Sepúlveda P Melin (2001) Application of a Breeder Genetic Algorithm for System Identification in an Adaptive Finite Impulse Response Filter. The Third NASA/DoD Workshop on Evolvable Hardware Long Beach California, USA

    Google Scholar 

  • EKP Chong SH Żak (1996) An Introduction to Optimization John Wiley Sons Inc., USA 67–68

    Google Scholar 

  • O Cordón F Herrera F Hoffmann L Magdalena (2001) Genetic Fuzzy Systems. Evolutionary Tuning and Learning of Fuzzy Knowledge Bases World Scientific USA 69

    Google Scholar 

  • DB Fogel (2000) Evolutionary Computation EditionNumber2 IEEE Press Editorial USA

    Google Scholar 

  • DE Goldberg (1999) Genetic Algorithms in Search Optimization and Machine Learning. Addison Wesley USA 90–91

    Google Scholar 

  • Harris SP and Ifeachor EC (1996) Nonlinear FIR Filter Design by Genetic Algorithm. In 1st Online Conference on Soft Computing, August 1996. http://www.lania.mx/ccoello/EMOO/EMOOconferences.html#H

  • SS Haykin (2002) Adaptive Filter Theory EditionNumber4 Prentice Hall USA 22–26

    Google Scholar 

  • Herrera F and Lozano M (1998) Fuzzy Genetic Algorithms: Issues and Models. http://citeseer.nj.nec.com/16799.html.

  • Herrera F and Lozano M (2000) Gradual Distributed RealCoded Genetic Algorithms. IEEE-EC, 4(1) April 2000, p. 43. http://citeseer.nj.nec.com/herrera97gradual.html

  • EC Ifeachor BW Jervis (1996) Digital Signal Processing. A Practical Approach Addison-Wesley Publishing Company USA 254–255

    Google Scholar 

  • Ingle VK and Proakis JG (2000) Digital Signal Processing using Matlab. Ed. Brooks/Cole, 2000, pp. 371–377

  • J-SR Jang C-T Sun E Mizutani (1997) ArticleTitleNeuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligence Matlab Curriculum Series. Prentice Hall 122 160–168

    Google Scholar 

  • L Ljung (1999) System Identification EditionNumber2 Theory for the User Prentice Hall, USA 79–90

    Google Scholar 

  • Madisetti VK and Williams DB (1997) The Digital Signal Processing Handbook. A CRC Handbook Published in Cooperation with IEEE Press, pp. 15--1, 18--1, 18--7, 20--1, 20--4

  • M Mitchell (1998) ArticleTitleAn Introduction to Genetic Algorithms MIT Press, USA, 1998, pp. 3 5–6

    Google Scholar 

  • M Mokhtari M Marie (2000) Engineering Application of MATLAB 5.3 and SIMULINK 3 Springer-Verlag LondonGreat Britain 222

    Google Scholar 

  • Montiel O, Castillo O and Sepúlveda R (2002) Error and Energy Measures in System Identification Using an Evolutionary Algorithm. In Proceedings of the International Conference on Artificial Intelligence (IC-AI’02) Volume III, pp. 1184–1189, Las Vegas, Nevada, USA

  • Mühlenbein H (1997) Evolutionary Algorithms: Theory and Applications. http://citeseer.nj.nec.com/110687.html.

  • Mühlenbein H (1997) 6 Genetic Algorithms. Borneo. http://citeseer.nj.nec.com/181734.html.

  • H Mühlenbein Schilierkamp-Voosen (1993) ArticleTitlePredictive Model for Breeder Genetic Algorithm. Evolutionary Computation 1 IssueID1 25–49

    Google Scholar 

  • Proakis JG and Manolakis DG (1996) 3 ed. Digital Signal Processing. Principles, Algorithms, and Applications. Prentice Hall, pp. 47–50, 69, 70, 87–89, 931–936

  • Salomon R (1995) Genetic Algorithms and the O(n ln n) Complexity on Selected Test Functions. http://citesser.nj.nec.com/109962.html.

  • Slotine JE and W Li (1991) Applied Nonlinear Control. Prentice Hall, pp. 311–313

  • Tan KC (1997) Evolutionary System Identification in the Time-Domain. http://citeseer.nj.nec.com/236895.html.

  • Tan KC, Li Y, Murray-Smith DJ and Sharman KC (1995) System Identification and Linearisation Using Genetic Algorithms with Simulated Annealing. Proc. First IEE/IEEE Int. Conf. on GA in Eng. Syst.: Innovations and Appl., pp. 164–169. http://citeseer.nj.nec.com/tan95system.html

  • Voigt HM, Mühlenbein H and Cvetkovic D (1995) Fuzzy Recombination for the Breeder Genetic Algorithm. Proceedings of the Sixth International Conference on Genetic Algorithms, published by Morgan Kaufmann, pp. 1104–1111

  • Ziemer RE, Tranter WH and Ronald Fannin D (1998) Signal an Systems Continuous and Dicrete. 4 ed., Prentice Hall, USA, p. 77

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montiel, O., Castillo, O., Melin, P. et al. Application of a breeder genetic algorithm for filter optimization. Nat Comput 4, 11–37 (2005). https://doi.org/10.1007/s11047-004-9097-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-004-9097-z

Keywords

Navigation