Skip to main content
Log in

Information processing with structured excitable medium

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

There are many ways in which a nonlinear chemical medium can be used for information processing. Here we are concerned with an excitable medium and the straightforward method of information coding: a single excitation pulse represents a bit of information and a group of excitations forms a message. Our attention is focused on a specific type of nonhomogeneous medium that has an intentionally introduced geometrical structure of regions characterized by different excitability levels. We show that in information processing applications the geometry plays an equally important role as the dynamics of the medium and allows one to construct devices that perform complex signal processing operations even for a relatively simple kinetics of the reactions involved. In the paper we review a number of published chemical realizations of simple information processing devices like logical gates or memory cells and we show that by combining these devices as building blocks the medium can perform complex operations like for example counting of arriving excitations. We also present a new, simple realizations of chemical signal diode that transmits pulses in one direction only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adamatzky A, De Lacy Costello B et al (2005) Reaction-diffusion computers. Elsevier Science, Amsterdam

    Google Scholar 

  • Agladze K, Aliev RR et al (1996) Chemical diode. J Phys Chem 100:13895–13897

    Article  Google Scholar 

  • Amemiya T, Ohmori T et al (2000) An Oregonator-class model for photoinduced behavior in the Ru(bpy)3 2+-catalyzed Belousov-Zhabotinsky reaction. J Phys Chem A 104:336–344

    Article  Google Scholar 

  • Armstrong GR, Taylor AF et al (2004) Modelling wave propagation across a series of gaps. Phys Chem Chem Phys 6:4677–4681

    Article  Google Scholar 

  • Calude CS, Paun G (2002) Computing with cells and atoms. Taylor and Francis, London

    Google Scholar 

  • Dolnik M, Marek M (1991) Phase excitation curves in the model of forced excitable reaction system. J Phys Chem. 95:7267–7272

    Article  Google Scholar 

  • Dolnik M, Finkeova I et al (1989) Dynamics of forced excitable and oscillatory chemical-reaction systems. J Phys Chem 93:2764–2774

    Article  Google Scholar 

  • Dolnik M, Marek M et al (2002) Resonances in periodically forced excitable systems. J Phys Chem 96:3218–3224

    Article  Google Scholar 

  • Feynman RP, Allen RW, Heywould T (2000) Feynman lectures on computation. Perseus Books, New York

    Google Scholar 

  • Field RJ, Noyes RM (1974) Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J Chem Phys 60:1877–1884

    Article  Google Scholar 

  • Finkeova I, Dolnik M et al (1990) Excitable chemical reaction systems in a continuous stirred tank reactor. J Phys Chem 94:4110–4115

    Article  Google Scholar 

  • Gaspar V, Bazsa G et al (1983) The influence of visible light on the Belousov-Zhabotinskii oscillating reactions applying different catalysts. Z Phys Chem (Leipzig) 264:43–48

    Google Scholar 

  • Gorecki J, Kawczynski AL (1996) Molecular dynamics simulations of a thermochemical system in bistable and excitable regimes. J Phys Chem 100:19371–19379

    Article  Google Scholar 

  • Gorecka J, Gorecki J (2003) T-shaped coincidence detector as a band filter of chemical signal frequency. Phys Rev E 67:067203

    Article  Google Scholar 

  • Gorecki J, Gorecka JN (2005) On mathematical description of information processing in chemical systems. In: Aiki T, Niezgodka M et al (eds) Mathematical approach to nonlinear phenomena; Modeling, analysis and simulations, vol 23. GAKUTO International Series, Mathematical Sciences and Applications, pp 73–90

  • Gorecka J, Gorecki J (2006) Multiargument logical operations performed with excitable chemical medium. J Chem Phys 124:084101

    Article  Google Scholar 

  • Gorecki J, Yoshikawa K et al (2003) On chemical reactors that can count. J Phys Chem A 107:1664–1669

    Article  Google Scholar 

  • Gorecki J, Gorecka JN et al (2005) Sensing the distance to a source of periodic oscillations in a nonlinear chemical medium with the output information coded in frequency of excitation pulses. Phys Rev E 72:046201

    Article  Google Scholar 

  • Gorecka J, Gorecki J et al (2007) One dimensional chemical signal diode constructed with two non-excitable barriers. J Phys Chem A 111:885–889

    Article  Google Scholar 

  • Haken H (2002) Brain dynamics. Springer, Berlin

    MATH  Google Scholar 

  • Kapral R, Showalter K (1995) Chemical waves and patterns. Kluwer, Dordrecht

    Google Scholar 

  • Krischer K, Eiswirth M et al (1992) Oscillatory CO oxidation on Pt(110): modeling of temporal self-organization. J Chem Phys 96:9161–9172

    Article  Google Scholar 

  • Krug HJ, Pohlmann L et al (1990) Analysis of the modified complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov–Zhabotinskii systems. J Phys Chem 94:4862–4866

    Article  Google Scholar 

  • Kuhnert L, Agladze KI et al (1989) Image processing using light-sensitive chemical waves. Nature 337:244–247

    Article  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Lazar A, Noszticzius Z et al (1995) Chemical pulses in modified membranes I. Developing the technique. Physica D 84:112–119

    Article  Google Scholar 

  • Mikhailov AS, Showalter K (2006) Control of waves, patterns and turbulence in chemical systems. Phys Rep 425:79–194

    Article  MathSciNet  Google Scholar 

  • Motoike I, Yoshikawa K (1999) Information operations with an excitable field. Phys Rev E 59:5354–5360

    Article  Google Scholar 

  • Motoike IN, Yoshikawa K et al (2001) Real-time memory on an excitable field. Phys Rev 63:036220

    Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Noszticzuis Z, Horsthemke W et al (1987) Sustained chemical pulses in an annular gel reactor: a chemical pinwheel. Nature 329:619–620

    Article  Google Scholar 

  • Rambidi NG, Maximychev AV (1997) towards a biomolecular computer. information processing capabilities of biomolecular nonlinear dynamic media. BioSystems 41:195–211

    Article  Google Scholar 

  • Sielewiesiuk J, Gorecki J (2001a) Chemical impulses in the perpendicular junction of two channels. Acta Phys Pol B 32:1589–1603

    Google Scholar 

  • Sielewiesiuk J, Gorecki J (2001b) Logical functions of a cross junction of excitable chemical media. J Phys Chem A 105:8189–8195

    Article  Google Scholar 

  • Sielewiesiuk J, Gorecki J (2002a) On complex transformations of chemical signals passing through a passive barrier. Phys Rev E 66, 016212

    Article  Google Scholar 

  • Sielewiesiuk J, Gorecki J (2002b) Passive barrier as a transformer of chemical signal frequency. J Phys Chem A 106:4068–4076

    Article  Google Scholar 

  • Steinbock O, Toth A et al (1995) Navigating complex labyrinths—optimal paths from chemical waves. Science 267:868–871

    Article  Google Scholar 

  • Suzuki K, Yoshinobu T et al (2000) Unidirectional propagation of chemical waves through microgaps between zones with different excitability. J Phys Chem A 104:6602–6608

    Article  Google Scholar 

  • Tanaka M, Nagahara H et al (2007) Survival versus collapse: abrupt drop of excitability kills the traveling pulse, while gradual change results in adaptation. Phys Rev E 76:016205

    Article  Google Scholar 

  • Taylor AF, Armstrong GR et al (2003) Propagation of chemical waves across inexcitable gaps. Phys Chem Chem Phys 5:3928–3932

    Article  Google Scholar 

  • Tero A, Kobayashi R et al (2006) Physarum solver: a biologically inspired method of road-network navigation. Physica A 363:115–119

    Article  Google Scholar 

  • Toth A, Horvath D et al (2001) Unidirectional wave propagation in one spatial dimension. Chem Phys Lett 345:471–474

    Article  Google Scholar 

  • Volford A, Simon PL et al (1999) Rotating chemical waves: theory and experiments. Physica A 274:30–49

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gorecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorecki, J., Gorecka, J.N. & Igarashi, Y. Information processing with structured excitable medium. Nat Comput 8, 473–492 (2009). https://doi.org/10.1007/s11047-009-9119-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-009-9119-y

Keywords

Navigation