Skip to main content
Log in

Towards collaborative feature extraction for face recognition

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Principal components analysis has become a popular preprocessing method to avoid the small sample size problem for most of the supervised graph embedding methods. Nevertheless, there is potential loss of relevant information when projecting the data onto the space defined by the principal Eigenfaces when the number of individuals in the gallery is large. This paper introduces a new collaborative feature extraction method based on projection pursuit, as a robust preprocessing for supervised embedding methods. A previously proposed projection index was adopted as a measure of interestingness, based on a weighted sum of six state of the art indices. We compare our collaborative feature extraction technique against principal component analysis as preprocessing stage for Laplacianfaces. For completeness, results for Eigenfaces and Fisherfaces are included. Experimental results to demonstrate the robustness of our approach against changes in facial expression and lighting are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Batur AU, Hayes MH (2001) Linear subspace for illumination robust face recognition. In: Proceedings of the IEEE international conference on computer vision and patter recognition, Dec 2001

  • Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  • Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Proceedings of the conference advances in neural information processing system, vol 15. MIT Press, Cambridge

  • Cai D, He X, Han J, Zhang HJ (2006) Orthogonal Laplacianfaces for face recognition. IEEE Trans Image Process 15(11):3608–3614

    Article  Google Scholar 

  • Chiang S, Chang C, Ginsberg I (2001) Unsupervised target detection in hyperspectral images using projection pursuit. IEEE Trans Geosci Remote Sens 39(7):1380–1391

    Article  Google Scholar 

  • Deng W, Hu J, Guo J, Cai W, Feng D (2010) Robust, accurate and efficient face recognition from a single training image: a uniform pursuit approach. Pattern Recogn 43:1748–1762

    Article  MATH  Google Scholar 

  • Friedman H, Tukey J (1974) A projection pursuit algorithm for exploratory data analysis. IEEE Trans Comput C-23:881–889

    Article  Google Scholar 

  • Gross R, Shi J, Cohn J (2001) Where to go with face recognition. In: Proceedings of the third workshop empirical evaluation methods in computer vision, Dec 2001

  • Guo Q, Wu W, Massart D, Boucon C, de Jong S (2000) Sequential projection pursuit using genetic algorithms for data mining of analytical data. Ann Chem 72:2846–2855

    Google Scholar 

  • He X, Niyogi P (2003) Locality preserving projections. In: Proceeding of the conference on advances in neural information processing systems, vol 16. MIT Press, Cambridge

  • He X, Yan S, Hu Y, Niyogi P, Zhang HJ (2005) Face recognition using Laplacianfaces. IEEE Trans Pattern Recognit Mach Intell 27(3):328–340

    Article  Google Scholar 

  • Huber P (1985) Projection pursuit. Ann Stat 13:435–475

    Article  MATH  Google Scholar 

  • Hyvarinen A (1999) Survey on independent component analysis. Neural Comput Surv 2(1):94–128

    Google Scholar 

  • Ifarraguerri A, Chang C (2000) Unsupervised hyperspectral image analysis with projection pursuit. IEEE Trans Geosci Remote Sens 38(6):2529–2538

    Article  Google Scholar 

  • Jimenez L, Landgrebe D (1999) Hyperspectral data analysis and supervised feature reduction via projection pursuit. IEEE Trans Geosci Remote Sens 37(6):2653–2667

    Article  Google Scholar 

  • Jimenez L, Arzuga E, Velez M (2007) Unsupervised linear feature-extraction methods and their effects in the classification of high dimensional data. IEEE Trans Geosci Remote Sens 45(2):469–483

    Article  Google Scholar 

  • Jimenez AB, Lazaro JL, Dorronsoro JR (2009) Finding optimal model parameters by deterministic and annealed focused grid search. Neurocomputing 72(13-15):2824–2832

    Article  Google Scholar 

  • Jones M, Sibson R (1987) What is projection pursuit?. J R Stat Soc 150(1):1–37

    MathSciNet  MATH  Google Scholar 

  • Kokiopoulou E, Saad Y (2007) Orthogonal neighbourhood preserving projections. IEEE Trans Pattern Anal Mach Intell 29(12):2143–2156

    Article  Google Scholar 

  • Kokiopoulou E, Saad Y (2009) Enhanced graph-based dimensionality reduction with repulsion Laplaceans. Pattern Recogn 42:2392–2402

    Article  MATH  Google Scholar 

  • Levin A, Shashua A (2003) Principal component analysis over continuous subspaces and intersection of half-spaces. In: Proceedings of the European conference on computer vision and pattern recognition, vol 1, pp 313–320

  • Li SZ, Hou XW, Zhang HJ, Cheng QS (2001) Learning spatially localized, parts-based representation. In: Proceedings of IEEE international conference on computer vision and pattern recognition, Dec 2001

  • Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1):157–165

    Article  Google Scholar 

  • Liu C, Wechsler H (2000) Evolutionary pursuit and its application to face recognition. IEEE Trans Pattern Anal Mach Intell 22(6):560–582

    Google Scholar 

  • Martinez AM, Kak AC (2002) Face recognition using kernel based Fisher discriminant analysis. In: Proceedings of the fifth international conference on automatic face and gesture recognition, May 2002

  • Moses Y, Adini Y, Ulman S (1994) Face recognition: the problem of compensating for changes in illumination direction. In: European conference on computer vision, pp 286–296

  • Nason G (2001) Robust projection indices. J R Stat Soc B 63(3):551–567

    Article  MathSciNet  MATH  Google Scholar 

  • Rodriguez E, Nikolaidis K, Mu T, Ralph JF, Goulermas JY (2010) Collaborative projection pursuit for face recognition. In Proceedings of the fifth IEEE international conference on bio-inspired computing: theories and applications, pp 1346–1350, Sept 2010

  • Rodriguez-Martinez E, Goulermas JY, Mu T, Ralph JF (2010) Automatic induction of projection pursuit indices. IEEE Trans Neural Netw 21(8):1281–1295

    Article  Google Scholar 

  • Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  • Seung HS, Lee DD (2000) The manifold ways of perception. Science 290(5500):2268–2269

    Article  Google Scholar 

  • Shakunaga T, Shigenari K (2001) Decomposed Eigenfaces for face recognition under various lighting conditions. In: Proceedings of the IEEE international conference on computer vision and pattern recognition, Dec 2001

  • Sirovitch L, Kirby M (1987) Low-dimensional procedure for the characterization of human faces. J Opt Soc Am A 2:519–524

    Article  Google Scholar 

  • Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J Mach Learn Res 8:1027–1061

    MATH  Google Scholar 

  • Tenenbaum J, de Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  • Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Google Scholar 

  • Webb-Robertson BJM, Jaram KH, Harvey SD, Pose C, Wright BW (2005) An improved optimization algorithm and a Bayes termination criterion for sequential projection pursuit. Chemom Intell Lab Syst 77(1–2):149–160

    Article  Google Scholar 

  • Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):1027–1061

    Article  Google Scholar 

  • Yang J, Yu Y, Kunz W (2000) An efficient LDA algorithm for face recognition. In: Proceedings of the sixth international conference on control, automation, robotics and vision

  • Yang J, Yu Y, Niu B (2007) Globally maximizing locally minimizing: unsupervised discriminant projection with application to face and palm biometrics. IEEE Trans Pattern Anal Mach Intell 29(4):650–664

    Article  Google Scholar 

  • Zhang S (2009) Enhanced supervised locally linear embedding. Pattern Recogn Lett 30(13):1208–1218

    Article  Google Scholar 

  • Zhang K, Chan L (2006) Dimension reduction as a deflation method in ICA. IEEE Signal Process Lett 13(1):45–48

    Article  MathSciNet  Google Scholar 

  • Zhang T, Huang K, Li X, Yang J, Tao D (2010) Discriminative orthogonal neighborhood-preserving projections for classification.IEEE Trans Syst Man Cybern B Cybern 40(1):253–263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Y. Goulermas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, E., Nikolaidis, K., Mu, T. et al. Towards collaborative feature extraction for face recognition. Nat Comput 11, 395–404 (2012). https://doi.org/10.1007/s11047-011-9285-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-011-9285-6

Keywords

Navigation