Skip to main content
Log in

Text comprehension and the computational mind-agencies

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Guided by a polymath approach—encompassing neuroscience, philosophy, psychology and computer science, this article describes a novel ‘cognitive’ computational mind framework for text comprehension in terms of Minsky’s ‘Society of Mind’ and ‘Emotion Machine’ theories. Observing a top-down design method, we enumerate here the macrocosmic elements of the model—the ‘agencies’ and memory constructs, followed by an elucidation on the working principles and synthesis concerns. Besides corroboration of results of a dry-run test by thoughts generated by random human subjects; the completeness of the conceptualized framework has been validated as a consequence of its total representation of ‘text understanding’ functions of the human brain, types of human memory and emulation of the layers of the mind. A brief conceptual comparison, between the architecture and existing ‘conscious’ agents, has been included as well. The framework, though observed here in its capacity as a text comprehender, is capable of understanding in general. A cognitive model of text comprehension, besides contributing to the ‘thinking machines’ research enterprise, is envisioned to be strategic in the design of intelligent plagiarism checkers, literature genre-cataloguers, differential diagnosis systems, and educational aids for children with reading disorders. Turing’s landmark 1950 article on computational intelligence is the principal motivator behind our research initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ariely D (2008) Predictably irrational: the hidden forces that shape our decisions. Harper Collins, NY

    Google Scholar 

  • Ashby WR (1952) Design for a brain. Butler and Tanner Ltd., London

    Google Scholar 

  • Baars BJ (1988) A cognitive theory of consciousness. Cambridge University Press, Cambridge

    Google Scholar 

  • Baars BJ (1997) In the theater of consciousness: the workspace of the mind. Oxford University Press, Oxford

    Book  Google Scholar 

  • Baars BJ (2002) The conscious access hypothesis: origins and recent evidence. Trends Cogn Sci 6(1):47–52

    Article  Google Scholar 

  • Backus J (1978) Can programming be liberated from the von Neumann style? A functional style and its algebra of programs (ACM Turing Award lecture). Commun ACM 21(8):613–641

    Article  MATH  MathSciNet  Google Scholar 

  • Baddeley AD (1966) The influence of acoustic and semantic similarity on long-term memory for word sequences. Quart J Exp Psychol 18(4):302–309

    Article  Google Scholar 

  • Banaji MR, Greenwald AG (2013) Blindspot: hidden biases of good people. Delacorte Press, NY

    Google Scholar 

  • Banerjee R, Pal SK (2013) The Z-number enigma: a study through an experiment. In: Yager RR, Abbasov AM, Reformat MR, Shahbazova SN (eds) Soft computing: state of the art theory and novel applications, vol. 291 of studies in fuzziness and soft computing, Springer, Berlin/Heidelberg, pp 71–88

  • Baum EB (2009) Project to build programs that understand. In: Goertzel B, Hitzler P, Hutter M (eds) In: Proceedings of second conference on artificial general intelligence, vol. 8 of advances in intelligent systems research, Atlantis Press, Paris, pp 1–6

  • Bobrow DG (1964) Natural language input for a computer problem solving system. PhD thesis, Massachusetts Institute of Technology

  • Brains in Silicon. http://www.stanford.edu/group/brainsinsilicon/index.html. Accessed 8 April 2014

  • Bush V (1945) As we may think. Atl Mon 176(1):101–108

    Google Scholar 

  • Charniak E (1972) Toward a model of children’s story comprehension. Technical report, MIT Artificial Intelligence Laboratory

  • Chomsky N (1959) A review of B.F. Skinner’s “verbal behavior”. Language 35(1):26–58

    Article  Google Scholar 

  • Chomsky N (1991) Linguistics and cognitive science: problems and mysteries. In: The chomskyan turn, Blackwell Publishing, Oxford, pp 26–53

  • Chugani HT, Behen ME, Muzik O, Juhász C, Nagy F, Chugani DC (2001) Local brain functional activity following early deprivation: a study of post institutionalized Romanian orphans. NeuroImage 14(6):1290–1301

    Article  Google Scholar 

  • Clark HH (1997) Dogmas of understanding. Discourse Process 23:567–598

    Article  Google Scholar 

  • Conway MA, Pleydell-Pearce CW (2000) The construction of autobiographical memories in the self-memory system. Psychol Rev 107(2):261–288

    Article  Google Scholar 

  • Cristobal G, Schelkens P, Thienpont H (eds) (2011) Optical and digital image processing: fundamentals and applications. Wiley-VCH Verlag GmbH and Co., KGaA, Weinheim

    Google Scholar 

  • Dennett DC (2013) The normal well-tempered mind. http://www.edge.org/conversation/the-normal-well-tempered-mind

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer-Verlag, NY

    Book  Google Scholar 

  • Erman LD, Hayes-Roth F, Lesser VR, Reddy DR (1980) The Hearsay-II speech-understanding system: integrating knowledge to resolve uncertainty. ACM Comput Surv 12(2):213–253

    Article  Google Scholar 

  • Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, Lally A, Murdock JW, Nyberg E, Prager J, Schlaefer N, Welty C (2010) Building Watson: an overview of the DeepQA project. AI Mag 31(3):59–78

    Google Scholar 

  • Franklin S (2003) IDA: a conscious artifact? J Conscious Stud 10:47–66

    MathSciNet  Google Scholar 

  • Franklin S, Patterson FG (2006) The LIDA architecture: adding new modes of learning to an intelligent, autonomous, software agent. Integrated Design and Process Technology, San Diego

    Google Scholar 

  • Gladwell M (2005) Blink: the power of thinking without thinking. Little Brown and Company (Hachette Book Group), NY

    Google Scholar 

  • Gottlieb J, Oudeyer P, Lopes M, Baranes A (2013) Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends Cogn Sci 17(11):585–593

    Article  Google Scholar 

  • Grosz BJ (2012) What question would Turing pose today? AI Mag 33(4):73–81

    Google Scholar 

  • Harley TA (2008) The Psychology of Language: From Data to Theory, 3rd edn. Psychology Press—Taylor and Francis Group, New York

    Google Scholar 

  • Harrison H, Minsky M (1992) Unpublished chapters of “The Turing Option”. http://web.media.mit.edu/~minsky/papers/option.chapters.txt

  • Havasi C, Speer R, Alonso J (2007) Conceptnet 3: a flexible, multilingual semantic network for common sense knowledge. In: Proceedings of recent advances in natural language processing, pp 27–29

  • Hayes-Roth B (1985) A blackboard architecture for control. Artif Intell 26:251–321

    Article  Google Scholar 

  • Hewitt C (1970) Planner: a language for manipulating models and proving theorems in a robot, Massachusetts Institute of Technology—Project MAC—Artificial Intelligence—Memo 168, August 1970

  • Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80(3):953–978

    Google Scholar 

  • Hunt J (2002) Blackboard architectures. Technical Report 1, JayDee Technology Ltd., Wiilshire

  • Husserl E (1970) Logical investigations (Translated from German). Routledge and Kegan Paul Ltd, London

    Google Scholar 

  • Jankowski A, Skowron A, Swiniarski RW (2013) Interactive complex granules. In: Szczuka MS, Czaja L, Kacprzak M (eds) CS & P, vol. 1032 of CEUR workshop proceedings, vol 1032. pp 206–218. CEUR-WS.org

  • Kahneman D (2011) Thinking, fast and slow. Farrar, Straus and Giroux, NY

    Google Scholar 

  • Kofka K (1935) Principles of gestalt psychology. Lund Humphries, London

    Google Scholar 

  • Kokinov BN (1994) The dual cognitive architecture: a hybrid multi-agent approach. In: Conn A (ed) Proceedings of 11th european conference on artificial intelligence (ECAI), John Wiley and Sons, Ltd, pp 203–207

  • Kokinov B (1989) About modelling some aspects of human memory. In: Man-computer interaction research (MACINTER-II), Elsevier, Amsterdam, pp 349–359

  • Kowalski R (2011) Computational logic and human thinking: how to be artificially intelligent. Cambridge University Press, NY

    Book  Google Scholar 

  • Langley P, Laird JE, Rogers S (2009) Cognitive architectures: research issues and challenges. Cogn Syst Res 10(2):141–160

    Article  Google Scholar 

  • Li L, Chen G, Yang S (2013) Construction of cognitive maps to improve e-book reading and navigation. Comput Educ 60(1):32–39

    Article  Google Scholar 

  • Lieberman H, Liu H, Singh P, Barry B (2004) Beating common sense into interactive applications. AI Mag 25(4):63–76

    Google Scholar 

  • Lin TY (1997) Granular computing. Technical report, Announcement of the BISC special interest group on granular computing

  • Liu H (2004) Montylingua: an end-to-end natural language processor with common sense. web.media.mit.edu/~hugo/montylingua

  • Loewenstein G (1994) The psychology of curiosity: a review and reinterpretation. Psychol Bull 116(1):75–98

    Article  Google Scholar 

  • Maes P (1987) Concepts and experiments in computational reflection. In: Meyrowitz NK (ed) Proceedings of conference on object-oriented programming systems, languages and applications (OOPSLA), ACM, NY, pp 147–155

  • Majumdar A, Sowa J, Stewart J (2008) Pursuing the goal of language understanding. In: Eklund P, Haemmerlé O (eds) Proceedings of 16th international conference on conceptual structures: knowledge visualization and reasoning, Springer-Verlag, Berlin, pp 21–42

  • McCarthy J (2008) The well-designed child. Artif Intell 172(18):2003–2014

    Article  MATH  Google Scholar 

  • McCarthy J (1995) Making robots conscious of their mental states. In: Machine intelligence, Oxford University Press, NY, pp 3–17

  • McCarthy J (1959) Programs with commonsense. In: Semantic information processing, MIT Press, MA, pp 403–418

  • McCauley L, Franklin S, Bogner M (2000) An emotion-based “conscious” software agent architecture. In: Paiva A (ed) Affective interactions, vol. 1814 of lecture notes on artificial intelligence, Springer-Verlag, Berlin, pp 107–120

  • McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28

    Article  Google Scholar 

  • Mead C (1990) Neuromorphic electronic systems. Proc IEEE 78:1629–1636

    Article  Google Scholar 

  • Miller GA (1955) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 101(2):343–352

    Article  Google Scholar 

  • Minsky ML (1986) The society of mind. Simon and Schuster Inc, NY

    Google Scholar 

  • Minsky ML (1992) Future of AI technology. Toshiba Rev 47(7):139

    Google Scholar 

  • Minsky M (2000) Commonsense based interfaces. Commun ACM 43(8):67–73

    Article  Google Scholar 

  • Minsky ML (2006) The emotion machine: commonsense thinking, artificial intelligence, and the future of the human mind. Simon and Schuster Inc, NY

    Google Scholar 

  • Minsky M (1975) A framework for representing knowledge. In: The psychology of computer vision, McGraw-Hill, NY, pp 211–277

  • Modha DS, Ananthanarayanan R, Esser SK, Ndirango A, Sherbondy AJ, Singh R (2011) Cognitive computing. Commun ACM 54(8):62–71

    Article  Google Scholar 

  • Morgan B (2013) A substrate for accountable layered systems. PhD thesis, Massachusetts Institute of Technology

  • Morgan B (2010) Funk2: a distributed processing language for reflective tracing of a large critic-selector cognitive architecture. In: proc. fourth IEEE international conference on self-adaptive and self-organizing systems workshop (SASOW), IEEE Computer Society, CA, pp 269–274

  • von Neumann J (2012) The computer and the brain, 3rd edn. Yale University Press, New Haven and London

    Google Scholar 

  • Pal SK, Banerjee R (2013) Context-granulation and subjective information quantification. Theor Comput Sci 448:2–14

    Article  MathSciNet  Google Scholar 

  • Pal SK, Banerjee R, Dutta S, Sen Sarma S (2013) An insight into the Z-number approach to CWW. Fundam Inform 124(1–2):197–229

    Google Scholar 

  • Payne SJ, Reader WR (2006) Constructing structure maps of multiple on-line texts. Int J Hum Comput Stud 64(5):461–474

    Article  Google Scholar 

  • Picard R (1997) Affective computing. MIT Press, MA

    Book  Google Scholar 

  • Pinker S (1997) How the mind works. W. W. Norton & Company, NY

    Google Scholar 

  • Pinker S (2007) The stuff of thought: language as a window into human nature. Penguin Books (Viking Press), NY, USA

    Google Scholar 

  • Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197:335–359

    Article  Google Scholar 

  • Ramachandran VS, Blakeslee S (1999) Phantoms in the brain: probing the mysteries of the human mind. William Morrow and Company (Harper Collins), New York

    Google Scholar 

  • Ramachandran VS, Hubbard EM (2001) Neural cross wiring and synesthesia. J Vis 1(3):67

    Article  Google Scholar 

  • Ramachandran VS, Hubbard EM (2003) The phenomenology of synaesthesia. J Conscious Stud 10(8):49–57

    Google Scholar 

  • Robinson K, Aronica L (2013) Finding your element: how to discover your talents and passions and transform your life. Viking (Penguin Group), NY

    Google Scholar 

  • Roese NJ (1997) Counterfactual thinking. Psychol Bull 121(1):133–148

    Article  Google Scholar 

  • Rothkopf EZ (1971) Incidental memory for location of information in text. J Verbal Learn Verbal Behav 10(6):608–613

    Article  Google Scholar 

  • Rugg MD, Yonelinas AP (2003) Human recognition memory: a cognitive neuroscience perspective. Trends Cogn Sci 7(7):313–319

    Article  Google Scholar 

  • Ryle G (1949) The concept of mind. University of Chicago Press, USA

    Google Scholar 

  • Seth AK (2010) The grand challenge of consciousness (opinion article). Front Psychol 1(5):1–2

    MATH  Google Scholar 

  • Seth AK, Izhikevich E, Reeke GN, Edelman GM (2006) Theories and measures of consciousness: an extended framework. Proc Natl Acad Sci (PNAS) 103(28):10799–10804

    Article  Google Scholar 

  • Singh P (2003b) Examining the society of mind. Comput Inform 22(6):521–543

    MATH  MathSciNet  Google Scholar 

  • Singh P, Barry B, Liu H (2004a) Teaching machines about everyday life. BT Technol J 22(4):227–240

    Article  Google Scholar 

  • Singh P, Minsky ML (2004) An architecture for cognitive diversity. In: Davis D (ed) Visions of mind. Idea Group Inc., London

    Google Scholar 

  • Singh P, Minsky M, Eslick I (2004b) Computing commonsense. BT Technol J 22(4):201–210

    Article  Google Scholar 

  • Singh P (2003) A preliminary collection of reflective critics for layered agent architectures. In: Proceedings of the safe agents workshop (AAMAS), Melbourne, Australia

  • Singh P (2005) EM-ONE: an architecture for reflective commonsense thinking. PhD thesis, Massachusetts Institute of Technology

  • Singh P, Minsky ML (2003) An architecture for combining ways to think. In: Proceedings of the international conference of the integration of knowledge intensive multi-agent systems, pp 669–674

  • Sloman A (1978) The computer revolution in philosophy: philosophy, science and models of mind. The Harvester Press Ltd., Sussex

    Google Scholar 

  • Sloman A (1984) Towards a computational theory of mind. In: Artificial intelligence—human effects, Ellis Horwood, UK, pp 173–182

  • Sloman A (2001) Varieties of affect and the CogAff architecture schema. In: Proceedings symposium on emotion, cognition, and affective computing AISB’01 convention, pp 39–48

  • Snaider J, McCall R, Franklin S (2011) The LIDA framework as a general tool for AGI. In: Schmidhuber J, Thórisson KR, Looks M (eds) Proceedings of 4th international conference in artificial general intelligence, vol 6830 of lecture notes in computer science, Springer, pp 133–142

  • Stallman RM, Sussman GJ (1977) Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis. Artif Intell 9:135–196

    Article  MATH  Google Scholar 

  • Stocco A, Lebiere C, Anderson JR (2010) Conditional routing of information to the cortex: a model of the basal ganglia’s role in cognitive coordination. Psychol Rev 117(2):541–574

    Article  Google Scholar 

  • Sussman GJ (1973) A computational model of skill acquisition. PhD thesis, Massachusetts Institute of Technology

  • SyNAPSE. https://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml. Accessed 8 April 2014

  • Todorovic D (2008) Gestalt principles. Scholarpedia 3(12):5345

    Article  Google Scholar 

  • Turing AM (1950) Computing machinery and intelligence. Mind 49:433–460

    Article  MathSciNet  Google Scholar 

  • Turing A (1949) Intelligent machinery. http://www.alanturing.net/intelligent_machinery/

  • Wertheimer M (1923) Laws of organization in perceptual forms. Psycologische Forsch 4:301–350

    Article  Google Scholar 

  • Winograd E (1988) Some observations on prospective remembering. In: Practical aspects of memory: current research and issues, vol 1. John Wiley, NJ, pp 348–353

  • Winograd T (1971) Procedures as a representation of data in a computer program for understanding natural language. PhD thesis, Massachusetts Institute of Technology

  • Winston PH (1970) Learning structural descriptions from examples. PhD thesis, MIT

  • Wolf M (2007) Proust and the squid: the story and science of the reading brain. Harper Collins, NY

    Google Scholar 

  • Zadeh LA (1994) Fuzzy logic, neural networks and soft computing. Commun ACM 37(3):77–84

    Article  MathSciNet  Google Scholar 

  • Zadeh LA (1996) Fuzzy logic = computing with words. IEEE Trans Fuzzy Syst 4(2):103–111

    Article  MathSciNet  Google Scholar 

  • Zadeh LA (1998) Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Comput 2:23–25

    Article  Google Scholar 

  • Zadeh LA (2011) A note on Z-numbers. Inf Sci 181(14):2923–2932

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang Z, Franklin S, Dasgupta D (1998) Metacognition in software agents using classifier systems. In: Mostow J, Rich C (eds) Proceedings of fifteenth national conference on artificial intelligence and tenth innovative applications of artificial intelligence conference, AAAI Press, CA, pp 83–88

Download references

Acknowledgments

This project is being carried out under the guidance of Professor Sankar K. Pal who is an INAE Chair Professor and J.C. Bose Fellow of the Government of India. The authors acknowledge Alan Turing as the prime inspiration for the work described herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romi Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, R., Pal, S.K. Text comprehension and the computational mind-agencies. Nat Comput 14, 603–635 (2015). https://doi.org/10.1007/s11047-014-9478-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-014-9478-x

Keywords

Navigation