Skip to main content
Log in

A universal Brownian cellular automaton with 3 states and 2 rules

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

This paper presents a 3-state asynchronous cellular automaton (CA) that requires merely two transition rules to achieve computational universality. This universality is achieved by implementing Priese’s delay-insensitive circuit elements, called the E-element and the K-element, on the cell space of a so-called Brownian CA, which is an asynchronous CA containing local configurations that conduct a random walk in the circuit topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Biafore M (1994) Cellular automata for nanometer-scale computation. Physica D 70:415–433

    Article  MATH  Google Scholar 

  • Dasmahapatra S, Werner J, Zauner KP (2006) Noise as a computational resource. Int J Unconv Comput 2(4):305–319

    Google Scholar 

  • Durbeck LJK, Macias NJ (2001) The cell matrix: an architecture for nanocomputing. Nanotechnology 12:217–230

    Article  Google Scholar 

  • Isokawa T, Peper F, Ono K, Matsui N (2016) On a universal brownian cellular automata with 3 states and 2 rules. In: Proceedings of the 12th international conference on cellular automata for research and industry (ACRI2016), pp 14–23 . LNCS9863

  • Kish LB (2006) Thermal noise driven computing. Appl Phys Lett 89(14):144,104–1–3

  • Lee J, Peper F (2008) On Brownian cellular automata. In: Proceedings of AUTOMATA 2008, Luniver Press, pp 278–291

  • Lee J, Peper F (2009) Efficient computation in brownian cellular automata. In: Proceedings of of 4th international workshop on natural computing, pp 47–56

  • Lee J, Peper F, Cotofana S, Naruse M, Ohtsu M, Kawazoe T, Takahashi Y, Shimokawa T, Kish L, Kubota T (2016) Brownian circuits: designs. Int J Unconv Comput 12(5–6):341–362

    Google Scholar 

  • Lee J, Peper F, Leibnitzc K, Gu P (2016) Characterization of random fluctuation-based computation in cellular automata. Inf Sci 252–253:150–166

    Article  Google Scholar 

  • Peper F, Lee J, Adachi S, Mashiko S (2003) Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers? Nanotechnology 14:469–485

    Article  Google Scholar 

  • Peper F, Lee J, Carmona J, Cortadella J, Morita K (2013) Brownian circuits: fundamentals. ACM J Emerg Technol Comput Syst 9(1), 3:1–24

  • Peper F, Lee J, Isokawa T (2009) Cellular nanocomputers: a focused review. Int J Nanotechnol Mol Comput 1:33–49

    Article  Google Scholar 

  • Peper F, Watanabe T, Isokawa T, Matsui N (2014) Cellular automaton-based nanoelectronic hardware. In: Proceedings of the 6th IEEE international nanoelectronics conference (IEEE INEC 2014), pp 1–3

  • Priese L (1983) Automata and concurrency. Theor Comput Sci 25(3):221–265

    Article  MathSciNet  MATH  Google Scholar 

  • Yanagida T, Ueda M, Murata T, Esaki S, Ishii Y (2007) Brownian motion, fluctuation and life. Biosystems 88(3):228–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teijiro Isokawa.

Additional information

A short version of the paper is 12th International conference on Cellular Automata for Research and Industry (ACRI2016), 2016 (Isokawa et al. 2016). This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Robotics” (No. 15H00825) of The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isokawa, T., Peper, F., Ono, K. et al. A universal Brownian cellular automaton with 3 states and 2 rules. Nat Comput 17, 499–509 (2018). https://doi.org/10.1007/s11047-017-9651-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-017-9651-0

Keywords

Navigation