Skip to main content
Log in

iMLP: Applying Multi-Layer Perceptrons to Interval-Valued Data

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Interval-valued data offer a valuable way of representing the available information in complex problems where uncertainty, inaccuracy or variability must be taken into account. In addition, the combination of Interval Analysis with soft-computing methods, such as neural networks, have shown their potential to satisfy the requirements of the decision support systems when tackling complex situations. This paper proposes and analyzes a new model of Multilayer Perceptron based on interval arithmetic that facilitates handling input and output interval data, but where weights and biases are single-valued and not interval-valued. Two applications are considered. The first one shows an interval-valued function approximation model and the second one evaluates the prediction intervals of crisp models fed with interval-valued input data. The approximation capabilities of the proposed model are illustrated by means of its application to the forecasting of daily electricity price intervals. Finally, further research issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

iMLP:

interval Multilayer Perceptron

INN:

Interval Neural Network

MAPE:

Mean Absolute Percentage Error

MLP:

Multilayer Perceptron

References

  1. Smith K.A. (2005) Applications of neural networks. Comp. Oper. Res. 32(10): 2495–2497

    Article  Google Scholar 

  2. Smith K.A., Gupta J.N.D. (2000) Neural networks in business: techniques and applications for the operations researcher. Comp. Oper. Res. 27(11–12): 1023–1044

    Article  MATH  Google Scholar 

  3. Wong B.K., Lai V.S., Lam J. (2000) A bibliography of neural networks business applications research: 1994–1998. Comp. Oper. Res. 27(11–12): 1045–1076

    Article  MATH  Google Scholar 

  4. Perez M. (2006) Artificial neural networks and bankruptcy forecasting: A state of the art. Neural Comput. Appl. 15(2): 154–163

    Article  Google Scholar 

  5. Zhang G., Patuwo B.E., Hu M.Y. (1998) Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 14(1): 35–62

    Article  Google Scholar 

  6. Zhang G.P. (2001) An investigation of neural networks for linear time-series forecasting. Computers and Operations Research 28(12): 1183–1202

    Article  MATH  Google Scholar 

  7. Craven M.W., Shavlik J.W. (1997) Using neural networks for data mining. Future Gener. Comp. Syst. 13(2–3): 211–229

    Article  Google Scholar 

  8. Pal S.K., Talwar V., Mitra P. (2002) Web mining in soft computing framework: relevance, state of the art and future directions. IEEE Trans. on Neural Networks 13(5):1163–1177

    Article  Google Scholar 

  9. Bishop C.M. (1995) Neural Networks for Pattern Recognition. Oxford University Press, Oxford

    Google Scholar 

  10. Fine T.L. (1999) Feedforward Neural Network Methodology. Springer-Verlag, New York

    MATH  Google Scholar 

  11. Ward M., Peng W., Wang X. (2004) Hierarchical visual data mining for large-scale data. Computational Statistics 19: 147–158

    Article  MATH  MathSciNet  Google Scholar 

  12. Bock H.H., Diday E.(eds) (2000) Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer-Verlag, Berlin

    Google Scholar 

  13. Billard L., Diday E. (2003) From the statistics of data to the statistics of knowledge: symbolic data analysis. J. Am. Stat. Asso. 98(462): 470–487

    Article  MathSciNet  Google Scholar 

  14. Moore R.E. (1966) Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  15. Kearfott B. (1996) Interval computations: Introduction, uses, and resources. Euromath Bull. 2(1): 95–112

    MathSciNet  Google Scholar 

  16. Young R.C. (1931) The algebra of many-valued quantities. Mathematische Annalen 104: 260–290

    Article  MATH  MathSciNet  Google Scholar 

  17. Beheshti, M., Berrached, R., de Korvin, A., Hu, C. and Sirisaengtaksin,O.: On interval weighted three-layer neural networks. In: Proceedings of the 31st Annual Simulation Symposium, pp. 188–195, Boston, MA, USA, 1998.

  18. Ishibuchi H., Tanaka H., Okada H. (1993) An architecture of neural networks with interval weights and its application to fuzzy regression analysis. Fuzzy Sets Syst. 57: 27–39

    Article  MATH  MathSciNet  Google Scholar 

  19. Baker M.R., Patil R. (1998) Universal approximation theorem for interval neural networks, Reliab. Comput. 4:235–239

    MATH  MathSciNet  Google Scholar 

  20. Simoff, S. J.: Handling uncertainty in neural networks: An interval approach. In: Proceedings of IEEE International Conference on Neural Networks, pp. 606–610, Washington, DC, USA, 1996.

  21. Drago G.P., Ridella S. (1999) Possibility and necessity pattern classification using an interval arithmetic perceptron. Neural Comput. Appl. 8(1):40–52

    Article  Google Scholar 

  22. Rossi, F. and Conan-Guez, B.: Multilayer perceptron on interval data. In: K. Jajuga, A. Sokolowski and H. H. Bock (eds.), Classification, Clustering, and Data Analysis (IFCS 2002), pp. 427–434, Cracow, Poland, 2002.

  23. Patiño-Escarcina, R., Callejas Bedregal, B. and Lyra, A.: Interval computing in neural networks: One layer interval neural networks. In: G. Das and V. P. Gulati (eds.), Proceedings of the 7th International Conference on Information Technology, CIT 2004, pp. 68–75, Hyderabad, India, 2004.

  24. Rumelhart, D. E., Hinton, G. E. and Williams, R. J.: Learning internal representations by error propagation. In: D. E. Rumelhart and J. M. McClelland (eds.), Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations, pp. 318–362, MIT Press: Cambridge, MA, USA, 1986.

  25. Girosi F., Jones M., Poggio T. (1995) Regularization theory and neural networks architectures. Neural Comput. 7(2): 219–269

    Google Scholar 

  26. Luenberger D.G. (1984) Linear and Nonlinear Programming. Reading, MA, Addison-Wesley

    MATH  Google Scholar 

  27. Bunn D.W. (ed) (2004) Modelling Prices in Competitive Electricity Markets. John Wiley & Sons, Chichester, UK

    Google Scholar 

  28. Mateo González A., Muñoz San Roque A., García González J. (2005) Modeling and forecasting electricity prices with input/output hidden Markov models. IEEE Trans. on Power Syst. 20(1): 13–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Muñoz San Roque.

Additional information

Research funded by Universidad Pontificia Comillas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roque, A.M.S., Maté, C., Arroyo, J. et al. iMLP: Applying Multi-Layer Perceptrons to Interval-Valued Data. Neural Process Lett 25, 157–169 (2007). https://doi.org/10.1007/s11063-007-9035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-007-9035-z

Keywords

Navigation