Skip to main content
Log in

A Lamarckian Hybrid of Differential Evolution and Conjugate Gradients for Neural Network Training

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

The paper describes two schemes that follow the model of Lamarckian evolution and combine differential evolution (DE), which is a population-based stochastic global search method, with the local optimization algorithm of conjugate gradients (CG). In the first, each offspring is fine-tuned by CG before competing with their parents. In the other CG is used to improve both parents and offspring in a manner that is completely seamless for individuals that survive more than one generation. Experiments involved training weights of feed-forward neural networks to solve three synthetic and four real-life problems. In six out of seven cases the DE–CG hybrid, which preserves and uses information on each solution’s local optimization process, outperformed two recent variants of DE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beyer HG, Schwefel HP (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1): 3–52

    Article  MATH  MathSciNet  Google Scholar 

  2. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6): 646–657

    Article  Google Scholar 

  3. Chakraborty, UK (eds) (2008) Advances in differential evolution. Springer, Berlin

    MATH  Google Scholar 

  4. Charalambous C (1992) Conjugate gradient algorithm for efficient training of artificial neural networks. Circuits, devices and systems. IEE Proc G 139: 301–310

    Google Scholar 

  5. Cortez P, Rocha M, Neves J (2002) A Lamarckian approach for neural network training. Neural Process Lett 15: 105–116

    Article  MATH  Google Scholar 

  6. Das S, Abraham A, Chakraborty U, Konar A (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput 13(3): 526–553

    Article  Google Scholar 

  7. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley-Interscience, New York

    MATH  Google Scholar 

  8. Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2): 124–141

    Article  Google Scholar 

  9. Fahlman SE (1988) An empirical study of learning speed in back-propagation networks. Technical Report CMU-CS-88-162. Carnegie-Mellon University, Pittsburgh, PA

    Google Scholar 

  10. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7: 149–154

    Article  MATH  MathSciNet  Google Scholar 

  11. Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from architectures to learning. Evol Intel 1(1): 47–62

    Article  Google Scholar 

  12. Hamm L, Brorsen BW, Hagan MT (2007) Comparison of stochastic global optimization methods to estimate neural network weights. Neural Process Lett 26: 145–158

    Article  Google Scholar 

  13. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49: 409–436

    MATH  MathSciNet  Google Scholar 

  14. Igel C, Kreutz M (2003) Operator adaptation in evolutionary computation and its application to structure optimization of neural networks. Neurocomputing 55(1–2): 347–361

    Article  Google Scholar 

  15. Igel C, Erlhagen W, Jancke D (2001) Optimization of dynamic neural fields. Neurocomputing 36(1–4): 225–233

    Article  MATH  Google Scholar 

  16. Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolution training algorithm for feed-forward neural networks. Neural Process Lett 17: 93–105

    Article  Google Scholar 

  17. Kaynak C (1995) Methods of combining multiple classifiers and their applications to handwritten digit recognition. Master’s thesis, Institute of Graduate Studies in Science and Engineering, Bogazici University, Istanbul, Turkey

  18. Kwedlo W, Bandurski K (2006) A parallel differential evolution algorithm for neural network training. In: International symposium on parallel computing in electrical engineering (PARELEC’06). IEEE Computer Society, Los Alamitos, CA, pp 319–324

  19. Mandischer M (2002) A comparison of evolution strategies and backpropagation for neural network training. Neurocomputing 42: 87–117

    Article  MATH  Google Scholar 

  20. Masters T, Land W (1997) A new training algorithm for the general regression neural network. In: IEEE international conference on systems, man, and cybernetics, vol 3, pp 1990–1994

  21. Michalewicz Z (1996) Genetic algorithms +  data structures =  evolution programs. Springer, Berlin

    MATH  Google Scholar 

  22. Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6(4): 525–533

    Article  Google Scholar 

  23. Montana D, Davis L (1989) Training feedforward neural networks using genetic algorithms. In: Proceedings of the 1989 International Joint Conference on Artificial Intelligence, Morgan Kaufmann, pp 762–767

  24. Quinlan JR (1993) Combining instance-based and model-based learning. Proceedings of the tenth international conference on machine learning. Morgan Kaufmann, San Francisco, pp 236–243

  25. Riedmiller M (1994) Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms. Int J Comput Stand Interfaces 5: 265–278

    Article  Google Scholar 

  26. Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE international conference on neural networks, pp 586–591

  27. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  28. Ross BJ (1999) A Lamarckian evolution strategy for genetic algorithms. In: Chambers LD (eds) Practical handbook of genetic algorithms: complex coding systems, vol 3. CRC Press, Boca Raton, pp 1–16

    Google Scholar 

  29. Sherrod PH (2008) Dtreg predictive modelling software. http://www.dtreg.com/DTREG.pdf. Accessed 12 Dec 2008

  30. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11: 341–359

    Article  MATH  MathSciNet  Google Scholar 

  31. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9): 1423–1447

    Article  Google Scholar 

  32. Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural networks. IEEE Trans Neural Netw 8(3): 694–713

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Kwedlo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandurski, K., Kwedlo, W. A Lamarckian Hybrid of Differential Evolution and Conjugate Gradients for Neural Network Training. Neural Process Lett 32, 31–44 (2010). https://doi.org/10.1007/s11063-010-9141-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-010-9141-1

Keywords

Navigation